Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.).
Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden (A.J.).
Arterioscler Thromb Vasc Biol. 2022 Aug;42(8):1037-1047. doi: 10.1161/ATVBAHA.122.317868. Epub 2022 Jun 2.
The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries.
We developed an ex vivo model to investigate binding of labeled human LDL to human coronary artery sections without the interference of cellular processes.
By staining consecutive sections of human coronary arteries, we found strong staining of sulfated glycosaminoglycans throughout the arterial intima, whereas endogenous LDL deposits were focally distributed. Ex vivo binding of LDL was uniform at all intimal areas with sulfated glycosaminoglycans. However, lowering the pH from 7.4 to 6.5 triggered a 35-fold increase in LDL binding. The pH-dependent binding was abolished by pretreating LDL with diethyl-pyrocarbonate, which blocks the protonation of histidine residues, or cyclohexanedione, which inhibits the positive charge of site B on LDL. Thus, both histidine protonation and site B are required for strong electrostatic LDL binding to the intima.
This study identifies histidine protonation as an important component for electrostatic LDL binding to human coronary arteries. Our findings show that the local pH will have a profound impact on LDL's affinity for sulfated glycosaminoglycans, which may influence the retention and accumulation pattern of LDL in the arterial vasculature.
动脉粥样硬化形成的起始步骤是 LDL(低密度脂蛋白)与动脉内膜中蛋白聚糖糖胺聚糖的静电结合。然而,尽管蛋白聚糖广泛存在于大多数冠状动脉段的内膜中,但 LDL 并非均匀分布,这表明 LDL 的滞留不仅仅取决于蛋白聚糖的存在。我们旨在确定促进 LDL 与人类冠状动脉血管壁相互作用的因素。
我们开发了一种离体模型,以研究标记的人 LDL 与人冠状动脉切片之间的结合,而不受细胞过程的干扰。
通过对人冠状动脉连续切片进行染色,我们发现硫酸化糖胺聚糖在整个动脉内膜中强烈染色,而内源性 LDL 沉积物呈局灶性分布。在所有带有硫酸化糖胺聚糖的内膜区域,LDL 的体外结合都是均匀的。然而,将 pH 值从 7.4 降低至 6.5 会引发 LDL 结合增加 35 倍。用二乙基亚硝胺预处理 LDL 可消除 pH 依赖性结合,二乙基亚硝胺可阻止组氨酸残基的质子化,或用环己二酮抑制 LDL 上 B 位的正电荷,环己二酮可抑制 LDL 上 B 位的正电荷。因此,组氨酸质子化和 B 位对于 LDL 与内膜的静电强结合都是必需的。
本研究确定组氨酸质子化为 LDL 静电结合到人类冠状动脉的重要组成部分。我们的研究结果表明,局部 pH 值将对 LDL 与硫酸化糖胺聚糖的亲和力产生深远影响,这可能会影响 LDL 在动脉血管中的滞留和积累模式。