Suppr超能文献

预测创伤死亡率:将伤前合并症纳入现有死亡率评分指数。

Prediction of Trauma Mortality Incorporating Pre-injury Comorbidities Into Existing Mortality Scoring Indices.

机构信息

Division of Trauma and Surgical Critical Care, 23498Jersey Shore University Medical Center, Neptune, NJ, USA.

Hackensack Meridian School of Medicine, Nutley, NJ, USA.

出版信息

Am Surg. 2022 Sep;88(9):2289-2301. doi: 10.1177/00031348221078980. Epub 2022 Jun 2.

Abstract

OBJECTIVES

The purpose of the study is to develop a comprehensive risk score of mortality in trauma victims that can predict the in-hospital mortality better than trauma injury severity score (TRISS) and A Severity Characterization of Trauma (ASCOT) score.

METHODS

All hospitalized trauma patients, between the ages of 16 and 89 years old were included in the study. The National Trauma Quality Improvement Program (TQIP) database of the calendar year 2011-2016 was accessed for the development of a traum mortality scoring system (TMS). The prediction of mortality was tested by creating a receiver operating characteristics (ROC) curve and an area under the curve (AUC). ROCs and AUCs of TMS were compared with TRISS and ASCOT score.

RESULTS

The AUC of TMS (0.892, 95% CI: 0.888-0.896) was better than TRISS (0.864, 95% CI: 0.859-0.869,  <0.0001) and ASCOT (0.841, 95% CI: 0.835-0.846,  <0.0001), respectively, in blunt injury. Similarly, TMS prediction (AUC: 0.949, 95% CI: 0.940-0.958) was better in penetrating injury when compared with TRISS (0.942, 95% CI: 0.934-0.951, = 0.030) and ASCOT (0.924, 95% CI: 0.912-0.936,  <0.0001), respectively.

CONCLUSION

TMS can predict the in-hospital mortality better than TRISS and ASCOT.

摘要

目的

本研究旨在开发一种全面的创伤患者死亡率风险评分,该评分能够比创伤严重度评分(TRISS)和创伤严重程度分类(ASCOT)更好地预测院内死亡率。

方法

本研究纳入了年龄在 16 至 89 岁之间的所有住院创伤患者。研究使用了 2011 年至 2016 年的国家创伤质量改进计划(TQIP)数据库来开发创伤死亡率评分系统(TMS)。通过绘制受试者工作特征(ROC)曲线和曲线下面积(AUC)来测试死亡率预测。将 TMS 的 ROC 和 AUC 与 TRISS 和 ASCOT 评分进行比较。

结果

TMS 的 AUC(0.892,95%置信区间:0.888-0.896)优于 TRISS(0.864,95%置信区间:0.859-0.869, <0.0001)和 ASCOT(0.841,95%置信区间:0.835-0.846, <0.0001),分别用于钝性损伤和穿透性损伤。同样,TMS 预测(AUC:0.949,95%置信区间:0.940-0.958)优于 TRISS(0.942,95%置信区间:0.934-0.951,=0.030)和 ASCOT(0.924,95%置信区间:0.912-0.936, <0.0001)。

结论

TMS 可以比 TRISS 和 ASCOT 更好地预测院内死亡率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验