Suppr超能文献

中国青藏高原达则错湖沉积物中多环芳烃(PAHs)的来源解析:三种受体模型的比较。

Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in a sediment core from Lake Dagze Co, Tibetan Plateau, China: Comparison of three receptor models.

机构信息

School of Geography, Nanjing Normal University, Nanjing 210023, China.

School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China.

出版信息

J Environ Sci (China). 2022 Nov;121:224-233. doi: 10.1016/j.jes.2022.01.043. Epub 2022 Feb 9.

Abstract

Receptor models are a useful tool for identifying sources of polycyclic aromatic hydrocarbons (PAHs) in multiple environmental media. In this study, three different receptor models (including the principal component analysis-multiple linear regression (PCA-MLR), positive matrix factorization (PMF), and Unmix models) were used to apportion the sources of 16 priority PAHs in a sediment core of Lake Dagze Co. The ∑PAHs (sum of all 16 measured PAHs) concentrations ranged from 51.89 to 132.82 ng/g with an average of 80.39 ng/g. The ∑PAHs were dominated by 2-3 ring PAHs, accounting for 80.12% on average, thereby indicating that they mainly originated from biomass and coal combustion and/or from long-range atmospheric transportation. The three models produced consistent source apportionment results. The greatest contributor to ∑PAHs was biomass combustion, followed by coal combustion, vehicle emissions, and petrogenic sources. Moreover, the temporal variation of the common sources was well-correlated among models. The multi-method comparison and evaluation results showed that all three models were useful tools for source apportionment of PAHs, with the PMF model providing better results than the PCA-MLR and Unmix models. The temporal trends of factor contributions were verified by PAHs with different ring numbers. Significant correlations were found between the simulated concentrations of each source factor and the PAHs with different ring numbers (P<0.01), except for the petrogenic source identified by the Unmix model (P>0.05). This study can provide useful information for further investigation of source apportionment of PAHs in the sediment cores.

摘要

受体模型是识别多种环境介质中多环芳烃(PAHs)来源的有用工具。在本研究中,使用了三种不同的受体模型(包括主成分分析-多元线性回归(PCA-MLR)、正定矩阵因子分解(PMF)和 Unmix 模型)来分配达格泽湖沉积物中 16 种优先 PAHs 的来源。∑PAHs(所有 16 种测量的 PAHs 的总和)浓度范围为 51.89 至 132.82ng/g,平均值为 80.39ng/g。∑PAHs 主要由 2-3 环 PAHs 组成,平均占 80.12%,表明它们主要来源于生物质和煤炭燃烧以及/或长距离大气传输。三种模型产生了一致的源分配结果。∑PAHs 的最大贡献者是生物质燃烧,其次是煤炭燃烧、车辆排放和石油源。此外,模型之间共同来源的时间变化相关性较好。多方法比较和评估结果表明,所有三种模型都是 PAHs 源分配的有用工具,PMF 模型的结果优于 PCA-MLR 和 Unmix 模型。通过具有不同环数的 PAHs 验证了因子贡献的时间趋势。每个源因子的模拟浓度与具有不同环数的 PAHs 之间存在显著相关性(P<0.01),除了 Unmix 模型识别的石油源(P>0.05)。这项研究可以为进一步调查沉积物中 PAHs 的源分配提供有用的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验