School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Small. 2022 Jul;18(26):e2104832. doi: 10.1002/smll.202104832. Epub 2022 Jun 2.
The practical application of the Li metal anode (LMA) is hindered by its low coulombic efficiency and dendrite formation. Although solid-state electrolytes hold promise as ideal partners for LMA, their effectiveness is limited by the poor workability and ionic conductivity. Herein, a modified separator combining the rapid Li transport of a liquid electrolyte and the interfacial stability of a solid-state electrolyte is explored to realize stable cycling of the LMA. A conformal nanolayer of LiPON is coated on a polypropylene separator by a scalable magnetron sputtering method, which is compatible with current Li-ion battery production lines and promising for the practical applications. The resulting LMA-electrolyte/separator interface is Li -conductive, electron-insulating, mechanically and chemically stable. Consequently, Li|Li cells maintain stable dendrite-free cycling with overpotentials of 10 and 40 mV over 2000 h at 1 and 5 mA cm , respectively. Additionally, the Li|LiFePO full cells achieve a capacity retention of 92% after 550 cycles, confirming its application potential.
金属锂阳极(LMA)的实际应用受到其低库仑效率和枝晶形成的限制。尽管固态电解质作为 LMA 的理想伴侣具有很大的潜力,但由于较差的加工性能和离子电导率,其效果受到限制。在此,通过一种可扩展的磁控溅射方法,在聚丙烯隔膜上涂覆了一层具有快速 Li 传输性能的液体电解质的 LiPON 纳米层,从而实现了 LMA 的稳定循环。该 LMA-电解质/隔膜界面具有 Li 导电性、电子绝缘性、机械和化学稳定性。因此,Li|Li 电池在 1 和 5 mA cm 时,分别经过 2000 小时后过电位仍保持在 10 和 40 mV 左右,实现了无枝晶稳定循环。此外,Li|LiFePO 全电池经过 550 次循环后容量保持率为 92%,证实了其应用潜力。