Suppr超能文献

用于大规模分布式纵向数据的小自助法集合

Bag of little bootstraps for massive and distributed longitudinal data.

作者信息

Zhou Xinkai, Zhou Jin J, Zhou Hua

机构信息

Department of Biostatistics, University of California, Los Angeles, California, USA.

Department of Medicine, University of California, Los Angeles, California, USA.

出版信息

Stat Anal Data Min. 2022 Jun;15(3):314-321. doi: 10.1002/sam.11563. Epub 2021 Nov 22.

Abstract

Linear mixed models are widely used for analyzing longitudinal datasets, and the inference for variance component parameters relies on the bootstrap method. However, health systems and technology companies routinely generate massive longitudinal datasets that make the traditional bootstrap method infeasible. To solve this problem, we extend the highly scalable bag of little bootstraps method for independent data to longitudinal data and develop a highly efficient Julia package MixedModelsBLB.jl. Simulation experiments and real data analysis demonstrate the favorable statistical performance and computational advantages of our method compared to the traditional bootstrap method. For the statistical inference of variance components, it achieves 200 times speedup on the scale of 1 million subjects (20 million total observations), and is the only currently available tool that can handle more than 10 million subjects (200 million total observations) using desktop computers.

摘要

线性混合模型被广泛用于分析纵向数据集,并且对方差分量参数的推断依赖于自助法。然而,卫生系统和科技公司经常生成大量纵向数据集,这使得传统的自助法变得不可行。为了解决这个问题,我们将用于独立数据的高度可扩展的小自助法扩展到纵向数据,并开发了一个高效的Julia包MixedModelsBLB.jl。模拟实验和实际数据分析表明,与传统自助法相比,我们的方法具有良好的统计性能和计算优势。对于方差分量的统计推断,在100万受试者规模(总共2000万条观测值)上它实现了200倍的加速,并且是目前唯一可用的能使用台式计算机处理超过1000万受试者(总共2亿条观测值)的工具。

相似文献

1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验