Suppr超能文献

首发未用药精神分裂症患者的异常脑网络交互与阳性症状相关

Abnormal Brain Network Interaction Associated With Positive Symptoms in Drug-Naive Patients With First-Episode Schizophrenia.

作者信息

Yuan Liu, Ma Xiaoqian, Li David, Li Zongchang, Ouyang Lijun, Fan Lejia, Yang Zihao, Zhang Zhenmei, Li Chunwang, He Ying, Chen Xiaogang

机构信息

Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.

Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.

出版信息

Front Psychiatry. 2022 May 17;13:870709. doi: 10.3389/fpsyt.2022.870709. eCollection 2022.

Abstract

Positive symptoms are marked features of schizophrenia, and emerging evidence has suggested that abnormalities of the brain network underlying these symptoms may play a crucial role in the pathophysiology of the disease. We constructed two brain functional networks based on the positive and negative correlations between positive symptom scores and brain connectivity in drug-naive patients with first-episode schizophrenia (FES, = 45) by using a machine-learning approach (connectome-based predictive modeling, CPM). The accuracy of the model was = 0.47 ( = 0.002). The positively and negatively associated network strengths were then compared among FES subjects, individuals at genetic high risk (GHR, = 41) for schizophrenia, and healthy controls (HCs, = 48). The results indicated that the positively associated network contained more cross-subnetwork connections (96.02% of 176 edges), with a focus on the default-mode network (DMN)-salience network (SN) and the DMN-frontoparietal task control (FPT) network. The negatively associated network had fewer cross-subnetwork connections (71.79% of 117 edges) and focused on the sensory/somatomotor hand (SMH)-Cingulo opercular task control (COTC) network, the DMN, and the visual network with significantly decreased connectivity in the COTC-SMH network in FES (FES < GHR, = 0.01; FES < HC, = 0.01). Additionally, the connectivity strengths of the right supplementary motor area (SMA) ( < 0.001) and the right precentral gyrus ( < 0.0001) were reduced in FES. To the best of our knowledge, this is the first study to generate two brain networks associated with positive symptoms by utilizing CPM in FES. Abnormal segregation, interactions of brain subnetworks, and impaired SMA might lead to salience attribution abnormalities and, thus, as a result, induce positive symptoms in schizophrenia.

摘要

阳性症状是精神分裂症的显著特征,并且新出现的证据表明,这些症状背后的脑网络异常可能在该疾病的病理生理学中起关键作用。我们通过使用机器学习方法(基于连接组的预测建模,CPM),根据首发精神分裂症(FES,n = 45)未用药患者的阳性症状评分与脑连接性之间的正相关和负相关构建了两个脑功能网络。模型的准确率为AUC = 0.47(p = 0.002)。然后比较了FES受试者、精神分裂症遗传高危个体(GHR,n = 41)和健康对照(HCs,n = 48)之间正相关和负相关的网络强度。结果表明,正相关网络包含更多的跨子网连接(176条边中的96.02%),主要集中在默认模式网络(DMN)-突显网络(SN)和DMN-额顶叶任务控制(FPT)网络。负相关网络的跨子网连接较少(117条边中的71.79%),主要集中在感觉/躯体运动手部(SMH)-扣带岛盖任务控制(COTC)网络、DMN和视觉网络,FES患者的COTC-SMH网络连接性显著降低(FES < GHR,p = 0.01;FES < HC,p = 0.01)。此外,FES患者右侧辅助运动区(SMA)(p < 0.001)和右侧中央前回(p < 0.0001)的连接强度降低。据我们所知,这是第一项在FES中利用CPM生成与阳性症状相关的两个脑网络的研究。脑子网的异常分离、相互作用以及SMA受损可能导致突显归因异常,进而诱发精神分裂症的阳性症状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eb5/9152123/76b74aef1ea9/fpsyt-13-870709-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验