Arora Sunny, Kumar Shailender, Kumar Pardeep
Department of Computer Science, Delhi Technological University, Delhi, India.
Department of Computer Science, Swansea University, Swansea, United Kingdom.
Curr Pharm Biotechnol. 2023;24(4):532-552. doi: 10.2174/1389201023666220603092433.
Diabetes mellitus is a long-term chronicle disorder with a high prevalence rate worldwide. Continuous blood glucose and lifestyle monitoring enabled the control of blood glucose dynamics through machine learning applications using data created by various popular sensors. This survey aims to assess various classical time series, neural networks and state-of-the-art regression models based on a wide variety of machine learning techniques to predict blood glucose and hyper/hypoglycemia in Type 1 diabetic patients. The analysis covers blood glucose prediction modeling, regression, hyper/hypoglycemia alerts, diabetes diagnosis, monitoring, and management. However, the primary focus is on evaluating models for the prediction of Type 1 diabetes. A wide variety of machine learning algorithms have been explored to implement precision medicine by clinicians and provide patients with an early warning system. The automated pancreas may benefit from predictions and alerts of hyper and hypoglycemia.
糖尿病是一种长期的慢性疾病,在全球范围内患病率很高。持续的血糖和生活方式监测通过使用各种流行传感器生成的数据,借助机器学习应用实现了对血糖动态的控制。本调查旨在基于多种机器学习技术评估各种经典时间序列、神经网络和最先进的回归模型,以预测1型糖尿病患者的血糖及高/低血糖情况。分析涵盖血糖预测建模、回归、高/低血糖警报、糖尿病诊断、监测和管理。然而,主要重点是评估用于预测1型糖尿病的模型。临床医生已经探索了各种各样的机器学习算法来实施精准医疗,并为患者提供早期预警系统。自动胰腺可能会从高血糖和低血糖的预测及警报中受益。