文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微流控细胞亲和力选择 T 细胞。

Microfluidic T Cell Selection by Cellular Avidity.

机构信息

Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.

Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, 1066, Switzerland.

出版信息

Adv Healthc Mater. 2022 Aug;11(16):e2200169. doi: 10.1002/adhm.202200169. Epub 2022 Jun 21.


DOI:10.1002/adhm.202200169
PMID:35657072
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11468699/
Abstract

No T cell receptor (TCR) T cell therapies have obtained clinical approval. The lack of strategies capable of selecting and recovering potent T cell candidates may be a contributor to this. Existing protocols for selecting TCR T cell clones for cell therapies such as peptide multimer methods have provided effective measurements on TCR affinities. However, these methods lack the ability to measure the collective strength of intercellular interactions (i.e., cellular avidity) and markers of T cell activation such as immunological synapse formation. This study describes a novel microfluidic fluid shear stress-based approach to identify and recover highly potent T cell clones based on the cellular avidity between living T cells and tumor cells. This approach is capable of probing approximately up to 10 000 T cell-tumor cell interactions per run and can recover potent T cells with up to 100% purity from mixed populations of T cells within 30 min. Markers of cytotoxicity, activation, and avidity persist when recovered high cellular avidity T cells are subsequently exposed to fresh tumor cells. These results demonstrate how microfluidic probing of cellular avidity may fast track the therapeutic T cell selection process and move the authors closer to precision cancer immunotherapy.

摘要

目前尚无获得临床批准的 T 细胞受体 (TCR) T 细胞疗法。缺乏能够选择和回收有效 T 细胞候选物的策略可能是造成这种情况的原因之一。用于选择 TCR T 细胞克隆进行细胞治疗的现有方案,如肽多聚体方法,已经提供了 TCR 亲和力的有效测量方法。然而,这些方法缺乏测量细胞间相互作用(即细胞亲合力)和 T 细胞活化标志物(如免疫突触形成)的集体强度的能力。本研究描述了一种基于微流控的新型流体切应力方法,用于根据活 T 细胞与肿瘤细胞之间的细胞亲合力来识别和回收高活性 T 细胞克隆。该方法每次运行可探测多达 10000 个 T 细胞-肿瘤细胞相互作用,并且能够在 30 分钟内从 T 细胞的混合群体中以高达 100%的纯度回收有效 T 细胞。当回收高细胞亲合力的 T 细胞随后暴露于新鲜肿瘤细胞时,细胞毒性、活化和亲合力标志物仍然存在。这些结果表明,细胞亲合力的微流控探测如何能够加速治疗性 T 细胞选择过程,并使作者更接近精准癌症免疫治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/02560e8d6444/ADHM-11-2200169-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/652b07a3e67f/ADHM-11-2200169-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/5cd15dfbef5d/ADHM-11-2200169-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/bc1fb8e036e7/ADHM-11-2200169-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/9d741ce08d11/ADHM-11-2200169-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/9a4ab31dbb88/ADHM-11-2200169-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/02560e8d6444/ADHM-11-2200169-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/652b07a3e67f/ADHM-11-2200169-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/5cd15dfbef5d/ADHM-11-2200169-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/bc1fb8e036e7/ADHM-11-2200169-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/9d741ce08d11/ADHM-11-2200169-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/9a4ab31dbb88/ADHM-11-2200169-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c141/11468699/02560e8d6444/ADHM-11-2200169-g005.jpg

相似文献

[1]
Microfluidic T Cell Selection by Cellular Avidity.

Adv Healthc Mater. 2022-8

[2]
High Peptide Dose Vaccination Promotes the Early Selection of Tumor Antigen-Specific CD8 T-Cells of Enhanced Functional Competence.

Front Immunol. 2020-1-8

[3]
Flow cytometry-based TCR-ligand Koff -rate assay for fast avidity screening of even very small antigen-specific T cell populations ex vivo.

Cytometry A. 2016-9

[4]
CD4-independent T cells impair TCR triggering of CD4-dependent T cells: a putative mechanism for T cell affinity maturation.

Eur J Immunol. 2001-2

[5]
Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes.

J Immunol. 2006-11-1

[6]
Avidity characterization of genetically engineered T-cells with novel and established approaches.

BMC Immunol. 2016-7-13

[7]
Development of a T-cell receptor multimer with high avidity for detecting a naturally presented tumor-associated antigen on osteosarcoma cells.

Cancer Sci. 2018-12-1

[8]
Natural high-avidity T-cell receptor efficiently mediates regression of cancer/testis antigen 83 positive common solid cancers.

J Immunother Cancer. 2022-7

[9]
Avidity optimization of a MAGE-A1-specific TCR with somatic hypermutation.

Eur J Immunol. 2021-6

[10]
High-Throughput Single-Cell TCR-pMHC Dissociation Rate Measurements Performed by an Autonomous Microfluidic Cellular Processing Unit.

ACS Sens. 2022-1-28

引用本文的文献

[1]
A Microfluidic Strategy to Capture Antigen-Specific High-Affinity B Cells.

Adv Nanobiomed Res. 2024-6

[2]
Circulating Tumor Cells Shed Shearosome Extracellular Vesicles in Capillary Bifurcations That Activate Endothelial and Immune Cells.

Adv Sci (Weinh). 2025-6-9

[3]
Polymerised superparamagnetic antigen presenting cell lymphocyte capture for enriching tumour reactive T-cells and neoantigen identification.

Nat Commun. 2025-6-2

[4]
Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies.

Nat Biomed Eng. 2025-2-14

[5]
Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies.

Theranostics. 2025-1-1

[6]
Circulating tumor cells shed large extracellular vesicles in capillary bifurcations that activate endothelial and immune cells.

bioRxiv. 2024-12-18

[7]
Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics.

Sci Adv. 2024-3-8

[8]
Microfluidic device combining hydrodynamic and dielectrophoretic trapping for the controlled contact between single micro-sized objects and application to adhesion assays.

Lab Chip. 2023-8-8

本文引用的文献

[1]
CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours.

Nature. 2022-4

[2]
Engineering of an Avidity-Optimized CD19-Specific Parallel Chimeric Antigen Receptor That Delivers Dual CD28 and 4-1BB Co-Stimulation.

Front Immunol. 2022

[3]
Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence.

Sci Transl Med. 2021-12-8

[4]
Optimizing interleukin-2 concentration, seeding density and bead-to-cell ratio of T-cell expansion for adoptive immunotherapy.

BMC Immunol. 2021-7-3

[5]
Defining an Optimal Dual-Targeted CAR T-cell Therapy Approach Simultaneously Targeting BCMA and GPRC5D to Prevent BCMA Escape-Driven Relapse in Multiple Myeloma.

Blood Cancer Discov. 2020-9

[6]
Connexin-Mediated Signaling at the Immunological Synapse.

Int J Mol Sci. 2020-5-25

[7]
Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018.

JAMA. 2020-3-3

[8]
Cx43-Gap Junctions Accumulate at the Cytotoxic Immunological Synapse Enabling Cytotoxic T Lymphocyte Melanoma Cell Killing.

Int J Mol Sci. 2019-9-12

[9]
Functional TCR T cell screening using single-cell droplet microfluidics.

Lab Chip. 2018-12-4

[10]
Single-Cell Acoustic Force Spectroscopy: Resolving Kinetics and Strength of T Cell Adhesion to Fibronectin.

Cell Rep. 2018-9-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索