Arora S, Bauer T, Parappurath N, Barczyk R, Verhagen E, Kuipers L
Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, Netherlands.
Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands.
Phys Rev Lett. 2022 May 20;128(20):203903. doi: 10.1103/PhysRevLett.128.203903.
We measure the local near-field spin in topological edge state waveguides that emulate the quantum spin Hall effect. We reveal a highly structured spin density distribution that is not linked to a unique pseudospin value. From experimental near-field real-space maps and numerical calculations, we confirm that this local structure is essential in understanding the properties of optical edge states and light-matter interactions. The global spin is reduced by a factor of 30 in the near field and, for certain frequencies, flipped compared to the pseudospin measured in the far field. We experimentally reveal the influence of higher-order Bloch harmonics in spin inhomogeneity, leading to a breakdown in the coupling between local helicity and global spin.
我们在模拟量子自旋霍尔效应的拓扑边缘态波导中测量了局部近场自旋。我们揭示了一种高度结构化的自旋密度分布,它与唯一的赝自旋值无关。通过实验近场实空间映射和数值计算,我们证实这种局部结构对于理解光学边缘态的性质和光与物质相互作用至关重要。近场中的全局自旋降低了30倍,并且在某些频率下,与远场中测量的赝自旋相比发生了翻转。我们通过实验揭示了高阶布洛赫谐波对自旋不均匀性的影响,导致局部螺旋度与全局自旋之间的耦合失效。