Suppr超能文献

Notch 基因调控网络中的相互作用强度决定了脊索的模式和命运。

Strength of interactions in the Notch gene regulatory network determines patterning and fate in the notochord.

机构信息

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany.

出版信息

Elife. 2022 Jun 6;11:e75429. doi: 10.7554/eLife.75429.

Abstract

Development of multicellular organisms requires the generation of gene expression patterns that determines cell fate and organ shape. Groups of genetic interactions known as Gene Regulatory Networks (GRNs) play a key role in the generation of such patterns. However, how the topology and parameters of GRNs determine patterning remains unclear due to the complexity of most experimental systems. To address this, we use the zebrafish notochord, an organ where coin-shaped precursor cells are initially arranged in a simple unidimensional geometry. These cells then differentiate into vacuolated and sheath cells. Using newly developed transgenic tools together with imaging, we identify and / as the main components of a Notch GRN that generates a lateral inhibition pattern and determines cell fate. Making use of this experimental system and mathematical modeling we show that lateral inhibition patterning is promoted when ligand-receptor interactions are stronger within the same cell than in neighboring cells. Altogether, we establish the zebrafish notochord as an experimental system to study pattern generation, and identify and characterize how the properties of GRNs determine self-organization of gene patterning and cell fate.

摘要

多细胞生物的发育需要产生决定细胞命运和器官形状的基因表达模式。已知的基因相互作用组称为基因调控网络(GRN)在产生这种模式中起着关键作用。然而,由于大多数实验系统的复杂性,GRN 的拓扑结构和参数如何决定模式仍然不清楚。为了解决这个问题,我们使用斑马鱼脊索,一种器官,其中最初排列在简单的一维几何形状的硬币状前体细胞。然后这些细胞分化成空泡细胞和鞘细胞。使用新开发的转基因工具以及成像,我们确定和/作为产生侧向抑制模式并决定细胞命运的 Notch GRN 的主要组成部分。利用这个实验系统和数学建模,我们表明,当配体-受体相互作用在同一细胞内比在相邻细胞内更强时,侧向抑制模式形成会得到促进。总的来说,我们将斑马鱼脊索确立为一个研究模式生成的实验系统,并确定和描述 GRN 的特性如何决定基因模式的自组织和细胞命运。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f6c/9170247/2755198d6e62/elife-75429-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验