Suppr超能文献

由供体-π-受体共轭聚合氮化碳组装体实现的增强型光催化全水分解。

Enhanced photocatalytic overall water splitting from an assembly of donor-π-acceptor conjugated polymeric carbon nitride.

作者信息

Hayat Asif, Sohail Muhammad, Anwar Usama, Taha T A, El-Nasser Karam S, Alenad Asma M, Al-Sehemi Abdullah G, Ahmad Alghamdi Noweir, Al-Hartomy Omar A, Amin Mohammed A, Alhadhrami A, Palamanit Arkom, Mane Sunil Kumar Baburao, Nawawi W I, Ajmal Zeeshan

机构信息

Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.

Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, PR China.

出版信息

J Colloid Interface Sci. 2022 Oct 15;624:411-422. doi: 10.1016/j.jcis.2022.05.139. Epub 2022 May 25.

Abstract

Well-organized water splitting semiconducting photocatalyst is an important concept, but stimulating aimed at decisive energy and environmental emergencies. In this context, visible light-based photocatalytic water splitting with low-dimensional semiconducting materials is proposed to produce sustainable energy. Here we optimized the sequential of organic electron-rich heterocyclic monomer namely benzothiadiazole (BTD) quenched within polymeric carbon nitride (PCN) semiconductor via copolymerization, thereby assembling a sanctum of donor-π-acceptor (D-π-A) photocatalysts. The selection of BTD is based on the benzene ring, which consequently anticipating a π cross-linker unit for hydrogen and oxygen evolution. A hydrogen evolution rates (HER) of 88.2 μmol/h for pristine PCN and 744.2 μmol/h for PCN-BTD (eight times higher than pure PCN) are observed. Additionally, a remarkable apparent quantum yield (AQY) of about 58.6% at 420 nm has been observed for PCN-BTD. Likewise, the oxygen evolution rate (OER) data reflect the generation of 0.2 μmol/h (visible) and 1.6 μmol/h (non-visible) for pure PCN. Though, OER of PCN-BTD is found to be 2.2 μmol/h (visible) and 14.8 μmol/h (non-visible), which are economically better than pure PCN. As such, the results show an important step toward modifying the design and explain a vital part of the D-π-A scheme at a balanced theme for fruitful photocatalysts intended for future demand.

摘要

结构良好的水分解半导体光催化剂是一个重要概念,但旨在应对决定性能源和环境紧急情况的刺激措施。在此背景下,提出利用低维半导体材料进行基于可见光的光催化水分解以产生可持续能源。在这里,我们通过共聚优化了在聚合氮化碳(PCN)半导体中淬灭的有机富电子杂环单体即苯并噻二唑(BTD)的序列,从而组装了供体-π-受体(D-π-A)光催化剂的体系。BTD的选择基于苯环,因此预期其为析氢和析氧的π交联单元。观察到原始PCN的析氢速率(HER)为88.2 μmol/h,PCN-BTD的析氢速率为744.2 μmol/h(比纯PCN高八倍)。此外,PCN-BTD在420 nm处观察到约58.6%的显著表观量子产率(AQY)。同样,纯PCN的析氧速率(OER)数据显示可见光下为0.2 μmol/h,不可见光下为1.6 μmol/h。不过,PCN-BTD的OER在可见光下为2.2 μmol/h,不可见光下为14.8 μmol/h,在经济性上优于纯PCN。因此,这些结果显示了在修改设计方面迈出的重要一步,并解释了D-π-A方案在一个平衡主题下的重要部分,以满足未来对高效光催化剂的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验