Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
Department of Psychiatry, Women's College Hospital, Toronto, Ontario, Canada.
J Clin Epidemiol. 2022 Aug;148:170-173. doi: 10.1016/j.jclinepi.2022.05.009. Epub 2022 Jun 1.
Latent Class Analysis (LCA) is an analytical approach for the identification of more homogeneous subgroups within an otherwise dissimilar patient population. In the current paper, Part II, we present a practical step-by-step guide for LCA of clinical data, including when LCA might be applied, selecting indicator variables, and choosing a final class model. We also identify some common pitfalls of LCA, and some related solutions.
潜在类别分析(LCA)是一种分析方法,用于在原本不同的患者群体中识别更同质的亚组。在本期论文的第二部分,我们提供了一个关于临床数据 LCA 的实用分步指南,包括何时可以应用 LCA、选择指标变量以及选择最终的类别模型。我们还确定了 LCA 的一些常见陷阱和一些相关的解决方案。
J Clin Epidemiol. 2022-8
J Clin Epidemiol. 2023-7
J Clin Epidemiol. 2022-7
J Epidemiol Community Health. 2025-5-9
Cochrane Database Syst Rev. 2025-6-19