García-García Ana, Serna Sonia, Yang Zhang, Delso Ignacio, Taleb Víctor, Hicks Thomas, Artschwager Raik, Vakhrushev Sergey Y, Clausen Henrik, Angulo Jesús, Corzana Francisco, Reichardt Niels C, Hurtado-Guerrero Ramon
Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza 50018, Spain.
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, Donostia San Sebastián 20014, Spain.
ACS Catal. 2021 Aug 6;11(15):9052-9065. doi: 10.1021/acscatal.1c01698. Epub 2021 Jul 8.
FUT8 is an essential α-1,6-fucosyltransferase that fucosylates the innermost GlcNAc of N-glycans, a process called core fucosylation. , FUT8 exhibits substrate preference for the biantennary complex N-glycan oligosaccharide (G0), but the role of the underlying protein/peptide to which N-glycans are attached remains unclear. Here, we explored the FUT8 enzyme with a series of N-glycan oligosaccharides, N-glycopeptides, and an Asn-linked oligosaccharide. We found that the underlying peptide plays a role in fucosylation of paucimannose (low mannose) and high-mannose N-glycans but not for complex-type N-glycans. Using saturation transfer difference (STD) NMR spectroscopy, we demonstrate that FUT8 recognizes all sugar units of the G0 N-glycan and most of the amino acid residues (Asn-X-Thr) that serve as a recognition sequon for the oligosaccharyltransferase (OST). The largest STD signals were observed in the presence of GDP, suggesting that prior FUT8 binding to GDP-β-l-fucose (GDP-Fuc) is required for an optimal recognition of N-glycans. We applied genetic engineering of glycosylation capacities in CHO cells to evaluate FUT8 core fucosylation of high-mannose and complex-type N-glycans in cells with a panel of well-characterized therapeutic N-glycoproteins. This confirmed that core fucosylation mainly occurs on complex-type N-glycans, although clearly only at selected glycosites. Eliminating the capacity for complex-type glycosylation in cells (KO ) revealed that glycosites with complex-type N-glycans when converted to high mannose lost the core Fuc. Interestingly, however, for erythropoietin that is uncommon among the tested glycoproteins in efficiently acquiring tetra-antennary N-glycans, two out of three N-glycosites obtained Fuc on the high-mannose N-glycans. An examination of the N-glycosylation sites of several protein crystal structures indicates that core fucosylation is mostly affected by the accessibility and nature of the N-glycan and not by the nature of the underlying peptide sequence. These data have further elucidated the different FUT8 acceptor substrate specificities both and in cells, revealing different mechanisms for promoting core fucosylation.
FUT8是一种必需的α-1,6-岩藻糖基转移酶,可将岩藻糖基连接到N-聚糖的最内层GlcNAc上,这一过程称为核心岩藻糖基化。FUT8对双天线复合N-聚糖寡糖(G0)表现出底物偏好,但N-聚糖所连接的基础蛋白质/肽的作用仍不清楚。在这里,我们用一系列N-聚糖寡糖、N-糖肽和一个天冬酰胺连接的寡糖对FUT8酶进行了研究。我们发现基础肽在寡甘露糖(低甘露糖)和高甘露糖N-聚糖的岩藻糖基化中起作用,但对复合型N-聚糖不起作用。使用饱和转移差(STD)核磁共振波谱,我们证明FUT8识别G0 N-聚糖的所有糖单元以及大部分作为寡糖基转移酶(OST)识别序列的氨基酸残基(天冬酰胺-X-苏氨酸)。在GDP存在的情况下观察到最大的STD信号,这表明FUT8与GDP-β-L-岩藻糖(GDP-Fuc)的预先结合是最佳识别N-聚糖所必需的。我们在CHO细胞中应用糖基化能力的基因工程,用一组特征明确的治疗性N-糖蛋白来评估细胞中FUT8对高甘露糖和复合型N-聚糖的核心岩藻糖基化。这证实了核心岩藻糖基化主要发生在复合型N-聚糖上,尽管显然只发生在选定的糖基化位点。消除细胞中的复合型糖基化能力(敲除)表明,当复合型N-聚糖转化为高甘露糖时,其糖基化位点失去了核心岩藻糖。然而,有趣的是,对于促红细胞生成素(在测试的糖蛋白中,它在有效获得四天线N-聚糖方面并不常见),三个N-糖基化位点中有两个在高甘露糖N-聚糖上获得了岩藻糖。对几种蛋白质晶体结构的N-糖基化位点进行检查表明,核心岩藻糖基化主要受N-聚糖的可及性和性质影响,而不是受基础肽序列性质的影响。这些数据进一步阐明了FUT8在体外和细胞内不同的受体底物特异性,揭示了促进核心岩藻糖基化的不同机制。