State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China.
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Da-Zhi Street, Harbin, 150001, P. R. China.
ChemSusChem. 2022 Aug 19;15(16):e202200741. doi: 10.1002/cssc.202200741. Epub 2022 Jun 28.
Electrochemical N fixation is considered to be a promising alternative to Haber-Bosch technology. Inspired by the composition and structure of natural nitrogenase, Fe-doped VS nanosheets were prepared via one-step solvothermal method. The electron transfer system mediated by organic conductive polymer (1-AAQ-PA) was constructed to promote the electron transfer between Fe-VS nanosheets and the electrode in electrocatalytic N reduction reaction (NRR). The obtained 1-AAQ-PA-Fe-VS electrode converted N to NH with a yield of 31.6 μg h mg at -0.35 V vs. reversible hydrogen electrode and high faradaic efficiency of 23.5 %. The introduction of Fe dopants favored N adsorption and activation, while the Li-S bond between Fe-VS and Li SO effectively inhibited hydrogen evolution. The highly efficient electron utilization in the electrocatalytic NRR process was realized using the 1-AAQ-PA as the electron transfer medium. Density functional theory calculations showed that N was preferentially adsorbed on Fe and reduced to NH via both distal and alternating mechanism.
电化学固氮被认为是替代哈伯-博世技术的一种很有前途的方法。受天然氮酶组成和结构的启发,通过一步溶剂热法制备了掺铁 VS 纳米片。构建了由有机导电聚合物(1-AAQ-PA)介导的电子传递体系,以促进电催化 N 还原反应(NRR)中 Fe-VS 纳米片与电极之间的电子传递。所得到的 1-AAQ-PA-Fe-VS 电极在相对于可逆氢电极的-0.35 V 下将 N 转化为 NH 的产率为 31.6 μg h mg -1 ,法拉第效率高达 23.5%。Fe 掺杂剂的引入有利于 N 的吸附和活化,而 Fe-VS 与 Li SO 之间的 Li-S 键有效地抑制了析氢反应。通过 1-AAQ-PA 作为电子转移介质,实现了电催化 NRR 过程中高效的电子利用。密度泛函理论计算表明,N 通过远程和交替机制优先吸附在 Fe 上并还原为 NH。