Suppr超能文献

利用植物标本追踪局部灭绝的种群遗传特征。

Tracking population genetic signatures of local extinction with herbarium specimens.

机构信息

Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Große Steinstraße 79/80, 06108 Halle (Saale), Germany.

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.

出版信息

Ann Bot. 2022 Jul 18;129(7):857-868. doi: 10.1093/aob/mcac061.

Abstract

BACKGROUND AND AIMS

Habitat degradation and landscape fragmentation dramatically lower population sizes of rare plant species. Decreasing population sizes may, in turn, negatively affect genetic diversity and reproductive fitness, which can ultimately lead to local extinction of populations. Although such extinction vortex dynamics have been postulated in theory and modelling for decades, empirical evidence from local extinctions of plant populations is scarce. In particular, comparisons between current vs. historical genetic diversity and differentiation are lacking despite their potential to guide conservation management.

METHODS

We studied the population genetic signatures of the local extinction of Biscutella laevigata subsp. gracilis populations in Central Germany. We used microsatellites to genotype individuals from 15 current populations, one ex situ population, and 81 herbarium samples from five extant and 22 extinct populations. In the current populations, we recorded population size and fitness proxies, collected seeds for a germination trial and conducted a vegetation survey. The latter served as a surrogate for habitat conditions to study how habitat dissimilarity affects functional connectivity among the current populations.

KEY RESULTS

Bayesian clustering revealed similar gene pool distribution in current and historical samples but also indicated that a distinct genetic cluster was significantly associated with extinction probability. Gene flow was affected by both the spatial distance and floristic composition of population sites, highlighting the potential of floristic composition as a powerful predictor of functional connectivity which may promote decision-making for reintroduction measures. For an extinct population, we found a negative relationship between sampling year and heterozygosity. Inbreeding negatively affected germination.

CONCLUSIONS

Our study illustrates the usefulness of historical DNA to study extinction vortices in threatened species. Our novel combination of classical population genetics together with data from herbarium specimens, an ex situ population and a germination trial underlines the need for genetic rescue measures to prevent extinction of B. laevigata in Central Germany.

摘要

背景与目的

生境退化和景观破碎化极大地降低了珍稀植物物种的种群数量。种群数量的减少反过来又可能对遗传多样性和生殖适应性产生负面影响,最终导致种群的局部灭绝。尽管这种灭绝旋涡动态在理论和模型中已经被提出了几十年,但由于缺乏从植物种群局部灭绝中获得的实证证据,这种动态仍然存在争议。特别是,尽管它们有可能指导保护管理,但目前仍然缺乏当前遗传多样性与历史遗传多样性和分化的比较。

方法

我们研究了德国中部 Biscutella laevigata subsp. gracilis 种群局部灭绝的种群遗传特征。我们使用微卫星对来自 15 个当前种群、1 个离体种群和 81 个标本的个体进行了基因型分析,这些标本来自 5 个现存和 22 个已灭绝种群。在当前种群中,我们记录了种群规模和适合度指标,收集了种子进行萌发试验,并进行了植被调查。后者作为生境条件的替代物,用于研究生境相似性如何影响当前种群之间的功能连通性。

主要结果

贝叶斯聚类分析显示当前和历史样本的基因库分布相似,但也表明一个独特的遗传聚类与灭绝概率显著相关。基因流受到种群位置的空间距离和植物区系组成的影响,突出了植物区系组成作为功能连通性的有力预测因子的潜力,这可能有助于做出再引入措施的决策。对于一个已灭绝的种群,我们发现采样年份与杂合度之间存在负相关关系。近交对萌发有负面影响。

结论

我们的研究说明了利用历史 DNA 研究受威胁物种灭绝旋涡的有用性。我们将经典种群遗传学数据与来自标本、离体种群和萌发试验的数据相结合,强调了遗传拯救措施的必要性,以防止德国中部 B. laevigata 的灭绝。

相似文献

引用本文的文献

7
Guidelines for the effective and ethical sampling of herbaria.植物标本馆有效且符合道德规范的采样指南。
Nat Ecol Evol. 2025 Feb;9(2):196-203. doi: 10.1038/s41559-024-02544-z. Epub 2024 Sep 27.

本文引用的文献

7
The Exciting Potential and Remaining Uncertainties of Genetic Rescue.遗传拯救的令人兴奋的潜力和遗留的不确定性。
Trends Ecol Evol. 2019 Dec;34(12):1070-1079. doi: 10.1016/j.tree.2019.06.006. Epub 2019 Jul 8.
10
Using herbaria to study global environmental change.利用植物标本馆研究全球环境变化。
New Phytol. 2019 Jan;221(1):110-122. doi: 10.1111/nph.15401. Epub 2018 Aug 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验