Suppr超能文献

图神经网络在分子激发光谱学习中的应用。

Graph Neural Networks for Learning Molecular Excitation Spectra.

机构信息

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 10409, Germany.

Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany.

出版信息

J Chem Theory Comput. 2022 Jul 12;18(7):4408-4417. doi: 10.1021/acs.jctc.2c00255. Epub 2022 Jun 7.

Abstract

Machine learning (ML) approaches have demonstrated the ability to predict molecular spectra at a fraction of the computational cost of traditional theoretical chemistry methods while maintaining high accuracy. Graph neural networks (GNNs) are particularly promising in this regard, but different types of GNNs have not yet been systematically compared. In this work, we benchmark and analyze five different GNNs for the prediction of excitation spectra from the QM9 dataset of organic molecules. We compare the GNN performance in the obvious runtime measurements, prediction accuracy, and analysis of outliers in the test set. Moreover, through TMAP clustering and statistical analysis, we are able to highlight clear hotspots of high prediction errors as well as optimal spectra prediction for molecules with certain functional groups. This in-depth benchmarking and subsequent analysis protocol lays down a recipe for comparing different ML methods and evaluating dataset quality.

摘要

机器学习(ML)方法已经证明,在计算成本仅为传统理论化学方法一小部分的情况下,能够预测分子光谱,同时保持高精度。图神经网络(GNN)在这方面特别有前途,但不同类型的 GNN 尚未得到系统比较。在这项工作中,我们使用 QM9 数据集的有机分子的激发光谱来基准测试和分析五种不同的 GNN。我们比较了 GNN 在明显的运行时间测量、预测精度和测试集异常值分析方面的性能。此外,通过 TMAP 聚类和统计分析,我们能够突出显示高预测误差的明显热点以及具有特定官能团的分子的最佳光谱预测。这种深入的基准测试和随后的分析方案为比较不同的 ML 方法和评估数据集质量奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验