Suppr超能文献

图神经网络综述。

A Comprehensive Survey on Graph Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24. doi: 10.1109/TNNLS.2020.2978386. Epub 2021 Jan 4.

Abstract

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial-temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

摘要

深度学习近年来已经彻底改变了许多机器学习任务,涵盖了图像分类、视频处理、语音识别和自然语言理解等领域。这些任务中的数据通常表示在欧几里得空间中。然而,越来越多的应用程序中,数据是从非欧几里得领域生成的,并表示为具有对象之间复杂关系和相互依赖的图。图数据的复杂性给现有的机器学习算法带来了重大挑战。最近,许多关于将深度学习方法扩展到图数据的研究已经出现。在本文中,我们全面概述了数据挖掘和机器学习领域中的图神经网络(GNN)。我们提出了一种新的分类法,将最新的 GNN 分为四类,即递归 GNN、卷积 GNN、图自动编码器和时空 GNN。我们进一步讨论了 GNN 在各个领域的应用,并总结了 GNN 的开源代码、基准数据集和模型评估。最后,我们提出了这个快速发展领域中的潜在研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验