理解社交媒体上 COVID-19 错误信息是如何以及由谁传播的:编码和网络分析。

Understanding How and by Whom COVID-19 Misinformation is Spread on Social Media: Coding and Network Analyses.

机构信息

School of Information Management, Nanjing University, Nanjing, China.

Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing University, Nanjing, China.

出版信息

J Med Internet Res. 2022 Jun 20;24(6):e37623. doi: 10.2196/37623.

Abstract

BACKGROUND

During global health crises such as the COVID-19 pandemic, rapid spread of misinformation on social media has occurred. The misinformation associated with COVID-19 has been analyzed, but little attention has been paid to developing a comprehensive analytical framework to study its spread on social media.

OBJECTIVE

We propose an elaboration likelihood model-based theoretical model to understand the persuasion process of COVID-19-related misinformation on social media.

METHODS

The proposed model incorporates the central route feature (content feature) and peripheral features (including creator authority, social proof, and emotion). The central-level COVID-19-related misinformation feature includes five topics: medical information, social issues and people's livelihoods, government response, epidemic spread, and international issues. First, we created a data set of COVID-19 pandemic-related misinformation based on fact-checking sources and a data set of posts that contained this misinformation on real-world social media. Based on the collected posts, we analyzed the dissemination patterns.

RESULTS

Our data set included 11,450 misinformation posts, with medical misinformation as the largest category (n=5359, 46.80%). Moreover, the results suggest that both the least (4660/11,301, 41.24%) and most (2320/11,301, 20.53%) active users are prone to sharing misinformation. Further, posts related to international topics that have the greatest chance of producing a profound and lasting impact on social media exhibited the highest distribution depth (maximum depth=14) and width (maximum width=2355). Additionally, 97.00% (2364/2437) of the spread was characterized by radiation dissemination.

CONCLUSIONS

Our proposed model and findings could help to combat the spread of misinformation by detecting suspicious users and identifying propagation characteristics.

摘要

背景

在全球卫生危机(如 COVID-19 大流行)期间,社交媒体上出现了错误信息的快速传播。已经对与 COVID-19 相关的错误信息进行了分析,但很少关注开发一个全面的分析框架来研究其在社交媒体上的传播。

目的

我们提出了一个基于详尽可能性模型的理论模型,以了解社交媒体上与 COVID-19 相关的错误信息的说服过程。

方法

所提出的模型包含了中心路径特征(内容特征)和外围特征(包括创作者权威、社会证明和情感)。中心级别的 COVID-19 相关错误信息特征包括五个主题:医疗信息、社会问题和民生、政府反应、疫情传播和国际问题。首先,我们基于事实核查来源和包含这些错误信息的真实社交媒体帖子的数据集创建了一个 COVID-19 大流行相关错误信息数据集。根据收集到的帖子,我们分析了传播模式。

结果

我们的数据集包括 11450 条错误信息帖子,其中医疗错误信息最多(n=5359,46.80%)。此外,结果表明,最少(4660/11301,41.24%)和最多(2320/11301,20.53%)的活跃用户都容易分享错误信息。此外,与国际主题相关的帖子在社交媒体上产生深远持久影响的可能性最大,其分布深度(最大深度=14)和宽度(最大宽度=2355)最高。此外,97.00%(2364/2437)的传播特征是辐射传播。

结论

我们提出的模型和发现可以通过检测可疑用户和识别传播特征来帮助对抗错误信息的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02f3/9217148/121339fed12a/jmir_v24i6e37623_fig1.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索