Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 H.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061 HP., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
Phytomedicine. 2022 Aug;103:154204. doi: 10.1016/j.phymed.2022.154204. Epub 2022 May 25.
Therapeutic failure and drug resistance are common sequelae to insulin resistance associated with type 2 diabetes mellitus (T2DM). Consequently, there is an unmet need of alternative strategies to overcome insulin resistance associated complications.
To demonstrate whether Kutkin (KT), iridoid glycoside enriched fraction of Picrorhiza kurroa extract (PKE) has potential to increase the insulin sensitivity vis à vis glucose uptake in differentiated adipocytes.
Molecular interaction of KT phytoconstituents, picroside-I (P-I) & picroside- II (P-II) with peroxisome proliferator-activated receptor gamma (PPARγ), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) were analyzed in silico. Cellular viability and adipogenesis were determined by following 3-(4, 5-Dimethylthiazol-2-Yl)-2, 5-Diphenyltetrazolium bromide (MTT) assay and Oil Red-O staining. Further, ELISA kit based triglycerides and diacylglycerol-O-Acyltransferase-1 (DGAT1) were assessed in differentiated adipocytes. ELISA based determination were performed to check the levels of adiponectin and tumor necrosis factor alpha (TNF-α). However, Flow cytometry and immunofluorescence based assays were employed to measure the glucose uptake and glucose transporter 4 (glut4) expression in differentiated adipocytes, respectively. Further to explore the targeted signaling axis, mRNA expression levels of PPARγ, CCAAT/enhancer binding protein α (CEBPα), and glut4 were determined using qRT-PCR and insulin receptor substrate-1 (IRS-1), Insulin receptor substrate-2 (IRS-2), PI3K/Akt, AS160, glut4 followed by protein validation using immunoblotting in differentiated adipocytes.
In silico analysis revealed the binding affinities of major constituents of KT (P-I& P-II) with PPARγ/PI3K/Akt. The enhanced intracellular accumulation of triglycerides with concomitant activation of PPARγ and C/EBPα in KT treated differentiated adipocytes indicates augmentation of adipogenesis in a concentration-dependent manner. Additionally, at cellular level, KT upregulated the expression of DAGT1, and decreases fatty acid synthase (FAS), and lipoprotein lipase (LPL), further affirmed improvement in lipid milieu. It was also observed that KT upregulated the levels of adiponectin and reduced TNFα expression, thus improving the secretory functions of adipocytes along with enhanced insulin sensitivity. Furthermore, KT significantly promoted insulin mediated glucose uptake by increasing glut4 translocation to the membrane via PI3/Akt signaling cascade. The results were further validated using PI3K specific inhibitor, wortmannin and findings revealed that KT treatment significantly enhanced the expression and activation of p-PI3K/PI3K and p-Akt/Akt even in case of treatment with PI3K inhibitor wortmannin alone and co-treatment with KT in differentiated adipocytes and affirmed that KT as activator of PI3K/Akt axis in the presence of inhibitor as well.
Collectively, KT fraction of PKE showed anti-diabetic effects by enhancing glucose uptake in differentiated adipocytes via activation of PI3K/Akt signaling cascade. Therefore, KT may be used as a promising novel natural therapeutic agent for managing T2DMand to the best of our knowledge, this is the first report, showing the efficacy and potential molecular mechanism of KT in enhancing insulin sensitivity and glucose uptake in differentiated adipocytes.
与 2 型糖尿病(T2DM)相关的胰岛素抵抗会导致治疗失败和耐药,因此,需要寻找克服与胰岛素抵抗相关并发症的替代策略。
证明 Picrorhiza kurroa 提取物(PKE)的环烯醚萜苷丰富部分 Kutkin(KT)是否有可能增加分化的脂肪细胞中葡萄糖摄取的胰岛素敏感性。
通过 3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴盐(MTT)测定和油红-O 染色测定,分析 KT 植物成分 picroside-I(P-I)和 picroside-II(P-II)与过氧化物酶体增殖物激活受体 γ(PPARγ)、磷脂酰肌醇 3-激酶(PI3K)和蛋白激酶 B(Akt)的分子相互作用。进一步通过酶联免疫吸附试验(ELISA)试剂盒评估分化的脂肪细胞中的甘油三酯和二酰基甘油-O-酰基转移酶-1(DGAT1)。通过酶联免疫吸附试验(ELISA)试剂盒测定脂肪细胞中的脂联素和肿瘤坏死因子-α(TNF-α)水平。然而,通过流式细胞术和免疫荧光测定分别测量分化的脂肪细胞中的葡萄糖摄取和葡萄糖转运蛋白 4(glut4)表达。为了进一步探索靶向信号通路,使用 qRT-PCR 测定分化的脂肪细胞中 PPARγ、CCAAT/增强子结合蛋白-α(CEBPα)和 glut4 的 mRNA 表达水平,并使用免疫印迹法对胰岛素受体底物-1(IRS-1)、胰岛素受体底物-2(IRS-2)、PI3K/Akt、AS160 和 glut4 进行蛋白验证。
计算机分析显示 KT(P-I 和 P-II)主要成分与 PPARγ/PI3K/Akt 的结合亲和力。KT 处理的分化脂肪细胞中甘油三酯的细胞内积累增加,同时 PPARγ 和 C/EBPα 被激活,表明脂肪生成以浓度依赖的方式增强。此外,在细胞水平上,KT 上调了 DAGT1 的表达,降低了脂肪酸合成酶(FAS)和脂蛋白脂肪酶(LPL)的表达,进一步证实了脂质环境的改善。还观察到 KT 上调了脂联素的水平并降低了 TNFα 的表达,从而改善了脂肪细胞的分泌功能以及增强了胰岛素敏感性。此外,KT 通过增加 PI3/Akt 信号级联的 glut4 向膜的易位,显著促进了胰岛素介导的葡萄糖摄取。使用 PI3K 特异性抑制剂wortmannin 进一步验证了这些结果,发现 KT 处理即使在单独使用 PI3K 抑制剂 wortmannin 以及在分化的脂肪细胞中与 KT 共同处理的情况下,也显著增强了 p-PI3K/PI3K 和 p-Akt/Akt 的表达和激活,并证实了 KT 作为 PI3K/Akt 轴的激活剂,即使在抑制剂存在的情况下也是如此。
总之,PKE 的 KT 部分通过激活 PI3K/Akt 信号级联增强分化的脂肪细胞中的葡萄糖摄取,显示出抗糖尿病作用。因此,KT 可作为治疗 2 型糖尿病的有前途的新型天然治疗剂,据我们所知,这是第一项显示 KT 在增强胰岛素敏感性和葡萄糖摄取方面的功效和潜在分子机制的研究,分化的脂肪细胞。