Suppr超能文献

中国人群预测脂肪量、预测瘦体重和预测体脂百分比与糖尿病的相关性:一项 15 年的前瞻性队列研究。

Association of predicted fat mass, predicted lean mass and predicted percent fat with diabetes mellitus in Chinese population: a 15-year prospective cohort.

机构信息

Department of Cardiology, Sichuan University West China Hospital, Chengdu, Sichuan, China.

Department of Equipment, Sichuan University West China Hospital, Chengdu, Sichuan, China.

出版信息

BMJ Open. 2022 Jun 7;12(6):e058162. doi: 10.1136/bmjopen-2021-058162.

Abstract

OBJECTIVES

With body mass index (BMI) failing to distinguish the mass of fat from lean, several novel predicted equations for predicted fat mass (FM), predicted lean mass (LM) and predicted per cent fat (PF) were recently developed and validated. Our aim was to explore whether the three novel parameters could better predict diabetes mellitus (DM) than the commonly used obesity indicators, including BMI, waist circumference, hip circumference and waist-hip ratio.

DESIGN

A 15-year prospective cohort was used.

SETTING

It was a prospective cohort, consisting of a general Chinese population from 1992 to 2007.

PARTICIPANTS

This cohort enrolled 711 people. People suffering from DM at baseline (n=24) were excluded, and 687 non-diabetics with complete data were included to the analysis.

PRIMARY OUTCOME

New-onset DM.

RESULTS

After the follow-up, 74 (48 men and 26 women) incidences of DM were documented. For men, the adjusted HRs were 1, 5.19 (p=0.003) and 7.67 (p<0.001) across predicted PF tertiles; 1, 2.86 (p=0.029) and 5.60 (p<0.001) across predicted FM tertiles; 1, 1.21 (p=0.646) and 2.27 (p=0.025) across predicted LM tertiles. Predicted FM performed better than other commonly used obesity indicators in discrimination with the highest Harrell's C-statistic among all the body composition parameters. Whereas, for women, none of the three novel parameters was the independent predictor.

CONCLUSION

Predicted PF, predicted LM and predicted FM could independently predict the risk of DM for men, with predicted FM performing better in discrimination than other commonly used obesity indicators. For women, larger samples were further needed.

摘要

目的

由于体重指数 (BMI) 无法区分脂肪量和瘦体重,因此最近开发并验证了几种新的预测脂肪量 (FM)、预测瘦体重 (LM) 和预测体脂百分比 (PF) 的预测方程。我们的目的是探讨这三个新参数是否比常用的肥胖指标(包括 BMI、腰围、臀围和腰臀比)能更好地预测糖尿病 (DM)。

设计

使用了一项 15 年的前瞻性队列研究。

设置

这是一项前瞻性队列研究,纳入了 1992 年至 2007 年期间的一般中国人群。

参与者

该队列纳入了 711 人。排除基线时患有 DM 的人群(n=24),并对 687 名无糖尿病且数据完整的非糖尿病患者进行了分析。

主要结局

新发 DM。

结果

随访后,共记录到 74 例(48 名男性和 26 名女性)DM 发病。对于男性,按预测 PF 三分位数分层,校正后的 HR 分别为 1、5.19(p=0.003)和 7.67(p<0.001);按预测 FM 三分位数分层,校正后的 HR 分别为 1、2.86(p=0.029)和 5.60(p<0.001);按预测 LM 三分位数分层,校正后的 HR 分别为 1、1.21(p=0.646)和 2.27(p=0.025)。在所有身体成分参数中,预测 FM 的区分度最好,其 Harrell's C 统计量最高。然而,对于女性,这三个新参数均不是独立的预测因素。

结论

预测 PF、预测 LM 和预测 FM 可独立预测男性 DM 的发病风险,其中预测 FM 在预测 DM 发病风险方面的区分度优于其他常用肥胖指标。对于女性,需要进一步扩大样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f034/9174812/bfb821e1c5c2/bmjopen-2021-058162f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验