Gayatri Meher Bolisetti, Gajula Navya Naidu, Chava Suresh, Reddy Aramati B M
Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India.
Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Cell Death Discov. 2022 Jun 7;8(1):277. doi: 10.1038/s41420-022-01077-3.
Activation of the key nutrient cellular sensors mTORC1 and mTORC2 directs the fate of mesenchymal stromal cells (MSCs). Here, we report that glutamine regulates crosstalk between mTOR complexes and lineage commitment of MSCs independent of glucose concentration. High glutamine-induced mTORC1 hyperactivation resulted in the suppression of mTORC2, which otherwise stabilizes RUNX2 via GSK3β inhibition through pAKT-473. Activation of GSK3β resulted in the ubiquitination of RUNX2, a key transcription factor for the osteogenic commitment of MSCs. However, low glutamine conditions inhibit mTORC1 hyperactivation followed by increased mTORC2 activation and RUNX2 stabilization. Under diabetic/high-glucose conditions, glutamine-triggered hyperactivation of mTORC1 resulted in mTORC2 suppression, and active GSK3β led to suppression of RUNX2. Activation of p-AMPK by metformin inhibits high glutamine-induced mTORC1 hyperactivation and rescues RUNX2 through the mTORC2/AKT-473 axis. Collectively, our study indicates the role of glutamine in modulating MSC fate through cross-talk between mTOR complexes by identifying a critical switch in signaling. It also shows the importance of glutamine in modulating molecular cues (mTORC1/p-70S6K/mTORC2/RUNX2) that are involved in driving diabetes-induced bone adipogenesis and other secondary complications.
关键营养细胞传感器mTORC1和mTORC2的激活决定了间充质基质细胞(MSC)的命运。在此,我们报告谷氨酰胺可独立于葡萄糖浓度调节mTOR复合物之间的串扰以及MSC的谱系定向。高谷氨酰胺诱导的mTORC1过度激活导致mTORC2受到抑制,否则mTORC2会通过pAKT - 473抑制GSK3β来稳定RUNX2。GSK3β的激活导致RUNX2泛素化,RUNX2是MSC成骨定向的关键转录因子。然而,低谷氨酰胺条件会抑制mTORC1过度激活,随后mTORC2激活增加且RUNX2稳定。在糖尿病/高糖条件下,谷氨酰胺引发的mTORC1过度激活导致mTORC2受到抑制,而活跃的GSK3β导致RUNX2受到抑制。二甲双胍激活p - AMPK可抑制高谷氨酰胺诱导的mTORC1过度激活,并通过mTORC2/AKT - 473轴挽救RUNX2。总体而言,我们的研究通过识别信号传导中的关键开关,表明了谷氨酰胺在通过mTOR复合物之间的串扰调节MSC命运中的作用。它还显示了谷氨酰胺在调节参与驱动糖尿病诱导的骨脂肪生成和其他继发性并发症的分子信号(mTORC1/p - 70S6K/mTORC2/RUNX2)中的重要性。