Suppr超能文献

重新审视生物结晶:嘌呤晶体包含物在真核生物中广泛存在。

Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes.

机构信息

Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic.

Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague 2, Czech Republic.

出版信息

ISME J. 2022 Sep;16(9):2290-2294. doi: 10.1038/s41396-022-01264-1. Epub 2022 Jun 7.

Abstract

Despite the widespread occurrence of intracellular crystalline inclusions in unicellular eukaryotes, scant attention has been paid to their composition, functions, and evolutionary origins. Using Raman microscopy, we examined >200 species from all major eukaryotic supergroups. We detected cellular crystalline inclusions in 77% species out of which 80% is composed of purines, such as anhydrous guanine (62%), guanine monohydrate (2%), uric acid (12%) and xanthine (4%). Our findings shifts the paradigm assuming predominance of calcite and oxalates. Purine crystals emerge in microorganisms in all habitats, e.g., in freshwater algae, endosymbionts of reef-building corals, deadly parasites, anaerobes in termite guts, or slime molds. Hence, purine biocrystallization is a general and ancestral eukaryotic process likely present in the last eukaryotic common ancestor (LECA) and here we propose two proteins omnipresent in eukaryotes that are likely in charge of their metabolism: hypoxanthine-guanine phosphoribosyl transferase and equilibrative nucleoside transporter. Purine crystalline inclusions are multifunctional structures representing high-capacity and rapid-turnover reserves of nitrogen and optically active elements, e.g., used in light sensing. Thus, we anticipate our work to be a starting point for further studies spanning from cell biology to global ecology, with potential applications in biotechnologies, bio-optics, or in human medicine.

摘要

尽管单细胞真核生物中广泛存在细胞内结晶内含物,但人们对其组成、功能和进化起源关注甚少。我们使用拉曼显微镜研究了来自所有主要真核超组的>200 个物种。我们在 77%的物种中检测到了细胞内结晶内含物,其中 80%由嘌呤组成,例如无水鸟嘌呤(62%)、鸟嘌呤一水合物(2%)、尿酸(12%)和黄嘌呤(4%)。我们的发现改变了以往认为方解石和草酸盐占主导地位的观点。嘌呤晶体出现在所有生境的微生物中,例如淡水藻类、造礁珊瑚的内共生体、致命寄生虫、白蚁肠道中的厌氧菌或粘菌。因此,嘌呤生物结晶是一种普遍存在于古老真核生物(LECA)中的古老真核生物过程,在这里我们提出两种在真核生物中普遍存在的可能负责其代谢的蛋白质:次黄嘌呤-鸟嘌呤磷酸核糖基转移酶和平衡核苷转运蛋白。嘌呤结晶内含物是多功能结构,代表高容量和快速周转的氮和光学活性元素储备,例如用于光感应。因此,我们预计我们的工作将成为从细胞生物学到全球生态学的进一步研究的起点,并具有在生物技术、生物光学或人类医学中的潜在应用。

相似文献

1
Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes.
ISME J. 2022 Sep;16(9):2290-2294. doi: 10.1038/s41396-022-01264-1. Epub 2022 Jun 7.
2
Catabolism of 8-oxo-purines is mainly routed via the guanine to xanthine interconversion pathway in Mycobacterium smegmatis.
Tuberculosis (Edinb). 2019 Dec;119:101879. doi: 10.1016/j.tube.2019.101879. Epub 2019 Oct 31.
4
Conversion of purines to xanthine by Methanococcus vannielii.
Arch Biochem Biophys. 1986 Nov 1;250(2):440-5. doi: 10.1016/0003-9861(86)90747-2.
5
Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
Planta. 2006 Dec;225(1):115-26. doi: 10.1007/s00425-006-0334-9. Epub 2006 Jul 15.
8
Genetic evidence for the essential role of PfNT1 in the transport and utilization of xanthine, guanine, guanosine and adenine by Plasmodium falciparum.
Mol Biochem Parasitol. 2008 Oct;161(2):130-9. doi: 10.1016/j.molbiopara.2008.06.012. Epub 2008 Jul 3.
9
Purine salvage as metabolite and energy saving mechanism in Camelus dromedarius: the recovery of guanine.
Comp Biochem Physiol B. 1987;87(1):157-60. doi: 10.1016/0305-0491(87)90483-4.
10
Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells.
Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32722-32730. doi: 10.1073/pnas.2005460117. Epub 2020 Dec 8.

引用本文的文献

2
Specialized molecular pathways drive the formation of light-scattering assemblies in leucophores.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2424979122. doi: 10.1073/pnas.2424979122. Epub 2025 May 28.
3
Transcriptomic response of the picoalga to nitrogen availability: new insights into cyanate lyase function.
Microbiol Spectr. 2025 Mar 25;13(5):e0265424. doi: 10.1128/spectrum.02654-24.
4
Eating the brain - A multidisciplinary study provides new insights into the mechanisms underlying the cytopathogenicity of Naegleria fowleri.
PLoS Pathog. 2025 Mar 17;21(3):e1012995. doi: 10.1371/journal.ppat.1012995. eCollection 2025 Mar.
5
Guanine crystal formation by the unicellular organism Phacotus lenticularis is part of a cellular stress response.
PLoS One. 2025 Feb 12;20(2):e0316193. doi: 10.1371/journal.pone.0316193. eCollection 2025.
6
Effects of the Symbiotic on the Host Ciliate Phenotypes.
Microorganisms. 2024 Dec 9;12(12):2537. doi: 10.3390/microorganisms12122537.
7
Green microalga conserves substrate uptake pattern but changes their metabolic uses across trophic transition.
Front Microbiol. 2024 Nov 27;15:1470054. doi: 10.3389/fmicb.2024.1470054. eCollection 2024.
8
Genetic control over biogenic crystal morphogenesis in zebrafish.
Nat Chem Biol. 2025 Mar;21(3):383-392. doi: 10.1038/s41589-024-01722-1. Epub 2024 Aug 30.
9
Characterization of Crystals in Ciliate Paramecium bursaria Harboring Endosymbiotic Chlorella variabilis.
Curr Microbiol. 2024 Jul 13;81(9):265. doi: 10.1007/s00284-024-03793-8.
10
Structure Determination of Biogenic Crystals Directly from 3D Electron Diffraction Data.
Cryst Growth Des. 2024 Jan 14;24(3):899-905. doi: 10.1021/acs.cgd.3c01290. eCollection 2024 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验