Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
Plant Cell Environ. 2022 Sep;45(9):2708-2728. doi: 10.1111/pce.14374. Epub 2022 Jun 23.
Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.
了解与种子长寿相关的遗传因素在农业和生态环境中至关重要。这个性状的多基因性质表明,其中许多因素仍然未被发现。在这里,我们利用拟南芥不同品种之间的种子寿命差异来进一步研究这种现象。与较短寿命品种相比,较长寿命品种的谷胱甘肽浓度更高,这支持了氧化还原平衡在种子长寿中起着重要作用。然而,高种子渗透率通常与较短的寿命相关,在长寿命品种中也存在。干种子转录组分析表明,储存的信使 RNA(mRNA)对寿命的贡献是复杂的,包括主要是品种特异性的机制。其他因素对寿命的不利影响可能会被干种子中储存的特定 mRNA 水平的升高所抵消,例如热休克蛋白的 mRNA。事实上,功能丧失突变体分析表明,热休克因子 HSF1A 和 1B 对长寿有贡献。此外,应激颗粒锌指蛋白 TZF9 或剪接体亚基 MOS4 或 MAC3A/MAC3B 的突变体延长了种子的寿命,这表明 RNA 是调节种子活力的一个新的参与者。与寿命有潜在相关性的蛋白质的 mRNAs 在寿命较短的品种中也很丰富,这进一步证实了衰老抗性是由多种因素决定的。