Suppr超能文献

抗体结合调节膜结合朊病毒蛋白的动力学。

Antibody binding modulates the dynamics of the membrane-bound prion protein.

机构信息

Department of Biochemistry, University of Zürich, Zürich, Switzerland.

Department of Biochemistry, University of Zürich, Zürich, Switzerland.

出版信息

Biophys J. 2022 Jul 19;121(14):2813-2825. doi: 10.1016/j.bpj.2022.06.007. Epub 2022 Jun 6.

Abstract

Misfolding of the cellular prion protein (PrP) is associated with lethal neurodegeneration. PrP consists of a flexible tail (residues 23-123) and a globular domain (residues 124-231) whose C-terminal end is anchored to the cell membrane. The neurotoxic antibody POM1 and the innocuous antibody POM6 recognize the globular domain. Experimental evidence indicates that POM1 binding to PrP emulates the influence on PrP of the misfolded prion protein (PrP) while the binding of POM6 has the opposite biological response. Little is known about the potential interactions between flexible tail, globular domain, and the membrane. Here, we used atomistic simulations to investigate how these interactions are modulated by the binding of the Fab fragments of POM1 and POM6 to PrP and by interstitial sequence truncations to the flexible tail. The simulations show that the binding of the antibodies restricts the range of orientations of the globular domain with respect to the membrane and decreases the distance between tail and membrane. Five of the six sequence truncations influence only marginally this distance and the contact patterns between tail and globular domain. The only exception is a truncation coupled to a charge inversion mutation of four N-terminal residues, which increases the distance of the flexible tail from the membrane. The interactions of the flexible tail and globular domain are modulated differently by the two antibodies.

摘要

细胞朊病毒蛋白(PrP)的错误折叠与致命的神经退行性变有关。PrP 由一个灵活的尾部(残基 23-123)和一个球形结构域(残基 124-231)组成,其 C 端末端固定在细胞膜上。神经毒性抗体 POM1 和无害抗体 POM6 识别球形结构域。实验证据表明,POM1 与 PrP 的结合模拟了错误折叠的朊病毒蛋白(PrP)对 PrP 的影响,而 POM6 的结合则具有相反的生物学反应。对于灵活的尾巴、球形结构域和膜之间的潜在相互作用知之甚少。在这里,我们使用原子模拟来研究 Fab 片段与 PrP 结合以及柔性尾部的间质序列截断如何调节这些相互作用。模拟表明,抗体的结合限制了球形结构域相对于膜的取向范围,并减小了尾部和膜之间的距离。六个序列截断中的五个仅对该距离和尾部与球形结构域之间的接触模式产生微小影响。唯一的例外是与四个 N 端残基的电荷反转突变耦合的截断,这增加了柔性尾部与膜的距离。两个抗体对柔性尾巴和球形结构域的相互作用的调节方式不同。

相似文献

1
Antibody binding modulates the dynamics of the membrane-bound prion protein.
Biophys J. 2022 Jul 19;121(14):2813-2825. doi: 10.1016/j.bpj.2022.06.007. Epub 2022 Jun 6.
2
The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein.
Nature. 2013 Sep 5;501(7465):102-6. doi: 10.1038/nature12402. Epub 2013 Jul 31.
3
Antibody binding increases the flexibility of the prion protein.
Biochim Biophys Acta Proteins Proteom. 2022 Nov 1;1870(11-12):140827. doi: 10.1016/j.bbapap.2022.140827. Epub 2022 Aug 2.
4
Crystallization and preliminary X-ray diffraction analysis of prion protein bound to the Fab fragment of the POM1 antibody.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Oct 1;67(Pt 10):1211-3. doi: 10.1107/S1744309111026273. Epub 2011 Sep 24.
7
Channel Activities of the Full-Length Prion and Truncated Proteins.
ACS Chem Neurosci. 2024 Jan 3;15(1):98-107. doi: 10.1021/acschemneuro.3c00412. Epub 2023 Dec 14.
8
Structural studies on the folded domain of the human prion protein bound to the Fab fragment of the antibody POM1.
Acta Crystallogr D Biol Crystallogr. 2012 Nov;68(Pt 11):1501-12. doi: 10.1107/S0907444912037328. Epub 2012 Oct 18.
9
Probing the N-terminal β-sheet conversion in the crystal structure of the human prion protein bound to a nanobody.
J Am Chem Soc. 2014 Jan 22;136(3):937-44. doi: 10.1021/ja407527p. Epub 2014 Jan 8.

引用本文的文献

1
A FAIR-Compliant Management Solution for Molecular Simulation Trajectories.
J Chem Inf Model. 2025 Mar 10;65(5):2443-2455. doi: 10.1021/acs.jcim.4c01301. Epub 2025 Feb 20.

本文引用的文献

1
Channel Activities of the Full-Length Prion and Truncated Proteins.
ACS Chem Neurosci. 2024 Jan 3;15(1):98-107. doi: 10.1021/acschemneuro.3c00412. Epub 2023 Dec 14.
2
A conformational switch controlling the toxicity of the prion protein.
Nat Struct Mol Biol. 2022 Aug;29(8):831-840. doi: 10.1038/s41594-022-00814-7. Epub 2022 Aug 10.
3
Mechanism of misfolding of the human prion protein revealed by a pathological mutation.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2019631118.
4
Liquid-liquid phase separation of full-length prion protein initiates conformational conversion in vitro.
J Biol Chem. 2021 Jan-Jun;296:100367. doi: 10.1016/j.jbc.2021.100367. Epub 2021 Feb 2.
5
An ABSINTH-Based Protocol for Predicting Binding Affinities between Proteins and Small Molecules.
J Chem Inf Model. 2020 Oct 26;60(10):5188-5202. doi: 10.1021/acs.jcim.0c00558. Epub 2020 Sep 23.
6
Kinetic Control of Amyloidogenesis Calls for Unconventional Drugs To Fight Alzheimer's Disease.
ACS Chem Neurosci. 2020 Jan 15;11(2):103-104. doi: 10.1021/acschemneuro.9b00676. Epub 2020 Jan 6.
7
pH-Induced Misfolding Mechanism of Prion Protein: Insights from Microsecond-Accelerated Molecular Dynamics Simulations.
ACS Chem Neurosci. 2019 Jun 19;10(6):2718-2729. doi: 10.1021/acschemneuro.8b00582. Epub 2019 May 22.
8
Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates.
Chem Rev. 2019 Jun 26;119(12):6956-6993. doi: 10.1021/acs.chemrev.8b00731. Epub 2019 Apr 11.
9
On the removal of initial state bias from simulation data.
J Chem Phys. 2019 Mar 14;150(10):104105. doi: 10.1063/1.5063556.
10
Best Practices for Quantification of Uncertainty and Sampling Quality in Molecular Simulations [Article v1.0].
Living J Comput Mol Sci. 2018;1(1). doi: 10.33011/livecoms.1.1.5067. Epub 2018 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验