Suppr超能文献

疾病、表型和放射诊断综合本体中的因果关系分析。

Analysis of Causal Relationships in Integrated Ontologies of Diseases, Phenotypes, and Radiological Diagnosis.

机构信息

Department of Radiology and Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Stud Health Technol Inform. 2022 Jun 6;290:258-262. doi: 10.3233/SHTI220074.

Abstract

Biomedical ontologies encode knowledge in a form that makes it computable. The current study used the integration of three large biomedical ontologies-the Disease Ontology (DO), Human Phenotype Ontology (HPO), and Radiology Gamuts Ontology (RGO)-to explore inferred causal relationships between high-level DO and HPO concepts. The principal DO categories were defined as the 7 direct subclasses of the top-level Disease class, excluding Disease of anatomical entity, plus the 12 direct subclasses of the latter term. The principal HPO categories were defined as the 25 direct subclasses of HPO's Phenotypic abnormality class. All causal relationships were tallied between members of the DO and HPO principal categories through their causal relationships in RGO. The analysis provides an understanding of the hierarchical organization of RGO terms, and offers insights into new relationships between DO and HPO classes.

摘要

生物医学本体论以可计算的形式对知识进行编码。本研究通过整合三个大型生物医学本体论——疾病本体论(DO)、人类表型本体论(HPO)和放射学范围本体论(RGO)——来探索 DO 高级别概念和 HPO 概念之间推断的因果关系。主要的 DO 类别被定义为顶级疾病类别的 7 个直接子类,不包括解剖实体的疾病,加上后者的 12 个直接子类。主要的 HPO 类别被定义为 HPO 表型异常类别的 25 个直接子类。通过 RGO 中的因果关系,在 DO 和 HPO 主要类别成员之间对所有因果关系进行了汇总。该分析提供了对 RGO 术语的层次结构组织的理解,并为 DO 和 HPO 类别之间的新关系提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验