Suppr超能文献

在电子健康记录系统中实施预测模型:来自自杀风险模型外部验证的经验教训。

Implementing Predictive Models Within an Electronic Health Record System: Lessons from an External Validation of a Suicide Risk Model.

机构信息

Centre for Addiction and Mental Health, Toronto, Ontario, Canada.

Quantitative Sciences, Bill & Melinda Gates Foundation, Seattle, Washington, United States.

出版信息

Stud Health Technol Inform. 2022 Jun 6;290:562-566. doi: 10.3233/SHTI220140.

Abstract

Over the past 5 years, there has been an increase in the development of EHR-based models for predicting suicidal behaviour. Using the McGinn (2000) framework for creating clinical prediction rules, this study discusses the broad validation of one such predictive model in a context external to its derivation. Along with reporting performance metrics, our paper high-lights five practical challenges that arise when trying to undertake such a project including (i) validation sample sizes, (ii) availability and timeliness of data, (iii) limited or incomplete documentation for predictor variables, (iv) reliance on structured data and (v) differences in the source context of algorithms. We also discuss our study in the context of the current literature.

摘要

在过去的 5 年中,基于电子健康记录(EHR)的预测自杀行为模型的开发有所增加。本研究使用 McGinn(2000)的临床预测规则制定框架,讨论了在其推导之外的背景下对这样的预测模型进行广泛验证的问题。除了报告性能指标外,本文还强调了在尝试进行此类项目时会遇到的五个实际挑战,包括:(i)验证样本量;(ii)数据的可用性和及时性;(iii)预测变量的文档记录有限或不完整;(iv)对结构化数据的依赖;以及(v)算法的源上下文的差异。我们还结合当前文献讨论了我们的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验