Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149 Münster, Germany.
School of Life Sciences, Arizona State University, PO Box 874701, Tempe, AZ 85287-4501, USA.
Proc Biol Sci. 2022 Jun 8;289(1976):20220336. doi: 10.1098/rspb.2022.0336.
Cuticular hydrocarbons (CHCs) serve two fundamental functions in insects: protection against desiccation and chemical signalling. How the interaction of genes shapes CHC profiles, which are essential for insect survival, adaptation and reproductive success, is still poorly understood. Here we investigate the genetic and genomic basis of CHC biosynthesis and variation in parasitoid wasps of the genus . We mapped 91 quantitative trait loci (QTL) explaining the variation of a total of 43 CHCs in F hybrid males from interspecific crosses between three species. To identify candidate genes, we localized orthologues of CHC biosynthesis-related genes in the genomes. We discovered multiple genomic regions where the location of QTL coincides with the location of CHC biosynthesis-related candidate genes. Most conspicuously, on a region close to the centromere of chromosome 1, multiple CHC biosynthesis-related candidate genes co-localize with several QTL explaining variation in methyl-branched alkanes. The genetic underpinnings behind this compound class are not well understood so far, despite their high potential for encoding chemical information as well as their prevalence in hymenopteran CHC profiles. Our study considerably extends our knowledge on the genetic architecture governing this important compound class, establishing a model for methyl-branched alkane genetics in the Hymenoptera in general.
表皮碳氢化合物 (CHC) 在昆虫中有两个基本功能:防止脱水和化学信号传递。基因如何相互作用形成对昆虫生存、适应和生殖成功至关重要的 CHC 图谱,目前仍知之甚少。在这里,我们研究了寄生蜂属 的 CHC 生物合成和变异的遗传和基因组基础。我们在三个物种的种间杂交中 F 杂种雄性中总共 43 种 CHC 的变化中映射了 91 个数量性状位点 (QTL)。为了鉴定候选基因,我们在 基因组中定位了与 CHC 生物合成相关基因的同源物。我们发现了多个基因组区域,其中 QTL 的位置与 CHC 生物合成相关候选基因的位置重合。最引人注目的是,在染色体 1 的近着丝粒区域,多个与 CHC 生物合成相关的候选基因与多个解释甲基支链烷烃变异的 QTL 共定位。尽管它们在编码化学信息方面具有很高的潜力,并且在膜翅目 CHC 图谱中很常见,但到目前为止,人们对这类化合物的遗传基础还了解甚少。我们的研究极大地扩展了我们对控制这一重要化合物类别的遗传结构的认识,为膜翅目一般的甲基支链烷烃遗传学建立了模型。