Suppr超能文献

2019 年 Pfam 蛋白质家族数据库。

The Pfam protein families database in 2019.

机构信息

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.

HHMI, Harvard University, 16 Divinity Ave Cambridge, MA 02138 USA.

出版信息

Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.

Abstract

The last few years have witnessed significant changes in Pfam (https://pfam.xfam.org). The number of families has grown substantially to a total of 17,929 in release 32.0. New additions have been coupled with efforts to improve existing families, including refinement of domain boundaries, their classification into Pfam clans, as well as their functional annotation. We recently began to collaborate with the RepeatsDB resource to improve the definition of tandem repeat families within Pfam. We carried out a significant comparison to the structural classification database, namely the Evolutionary Classification of Protein Domains (ECOD) that led to the creation of 825 new families based on their set of uncharacterized families (EUFs). Furthermore, we also connected Pfam entries to the Sequence Ontology (SO) through mapping of the Pfam type definitions to SO terms. Since Pfam has many community contributors, we recently enabled the linking between authorship of all Pfam entries with the corresponding authors' ORCID identifiers. This effectively permits authors to claim credit for their Pfam curation and link them to their ORCID record.

摘要

过去几年见证了 Pfam(https://pfam.xfam.org)的重大变化。家族数量大幅增长,在 32.0 版中共计达到 17929 个。新的添加内容与改进现有家族的努力相结合,包括改进域边界、将其分类为 Pfam 族,以及进行功能注释。我们最近开始与 RepeatsDB 资源合作,以改进 Pfam 中串联重复家族的定义。我们进行了一次与结构分类数据库(即蛋白质结构域进化分类数据库,ECOD)的重大比较,根据其未定义家族(EUFs)创建了 825 个新家族。此外,我们还通过将 Pfam 类型定义映射到 SO 术语,将 Pfam 条目连接到序列本体(SO)。由于 Pfam 有许多社区贡献者,我们最近启用了所有 Pfam 条目的作者与相应作者的 ORCID 标识符之间的链接。这有效地允许作者为他们的 Pfam 监管工作获得认可,并将其与他们的 ORCID 记录相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d892/6324024/0168240f0527/gky995fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验