Suppr超能文献

通过增强表面疏水性且无阻挡层来提高二氧化碳光还原过程中的质量和电荷转移

Enhancement of Mass and Charge Transfer during Carbon Dioxide Photoreduction by Enhanced Surface Hydrophobicity without a Barrier Layer.

作者信息

Liu Xuan, Huang Chengxi, Ouyang Bo, Du Yongping, Fu Boyu, Du Zhengwei, Ju Qiang, Ma Jingjing, Li Ang, Kan Erjun

机构信息

MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.

State Key Laboratory of High-efficiency Utilization of, Coal and Green Chemical Engineering, Ningxia University, Ningxia, 750021, P. R. China.

出版信息

Chemistry. 2022 Aug 1;28(43):e202201034. doi: 10.1002/chem.202201034. Epub 2022 Jun 30.

Abstract

The CO reduction reaction (CRR) represents a promising route for the clean utilization of renewable resources. But mass-transfer limitations seriously hinder the forward step. Enhancing the surface hydrophobicity by using polymers has been proved to be one of the most efficient strategies. However, as macromolecular organics, polymers on the surface hinder the transfer of charge carriers from catalysts to reactants. Herein, we describe an in-situ surface fluorination strategy to enhance the surface hydrophobicity of TiO without a barrier layer of organics, thus facilitating the mass transfer of CO to catalysts and charge transfer. With less obstruction to charge transfer, a higher CO and lower H surface concentration, the photocatalytic CRR generation rate of methanol (CH OH) is greatly enhanced to up to 247.15 μmol g  h . Furthermore, we investigated the overall defects; enhancing the surface hydrophobicity of catalysts provides a general and reliable method to improve the competitiveness of CRR.

摘要

CO还原反应(CRR)是可再生资源清洁利用的一条有前景的途径。但传质限制严重阻碍了这一进程的推进。使用聚合物增强表面疏水性已被证明是最有效的策略之一。然而,作为大分子有机物,表面的聚合物会阻碍电荷载流子从催化剂向反应物的转移。在此,我们描述了一种原位表面氟化策略,以增强TiO的表面疏水性,而不存在有机物质的阻挡层,从而促进CO向催化剂的传质和电荷转移。由于对电荷转移的阻碍较小,CO和H表面浓度较低,甲醇(CH₃OH)的光催化CRR生成速率大大提高,可达247.15 μmol g⁻¹ h⁻¹。此外,我们研究了整体缺陷;增强催化剂的表面疏水性为提高CRR的竞争力提供了一种通用且可靠的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验