Suppr超能文献

扩展T:使用混合闭集和开集噪声标签进行学习

Extended T: Learning With Mixed Closed-Set and Open-Set Noisy Labels.

作者信息

Xia Xiaobo, Han Bo, Wang Nannan, Deng Jiankang, Li Jiatong, Mao Yinian, Liu Tongliang

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3047-3058. doi: 10.1109/TPAMI.2022.3180545. Epub 2023 Feb 3.

Abstract

The noise transition matrix T, reflecting the probabilities that true labels flip into noisy ones, is of vital importance to model label noise and build statistically consistent classifiers. The traditional transition matrix is limited to model closed-set label noise, where noisy training data have true class labels within the noisy label set. It is unfitted to employ such a transition matrix to model open-set label noise, where some true class labels are outside the noisy label set. Therefore, when considering a more realistic situation, i.e., both closed-set and open-set label noises occur, prior works will give unbelievable solutions. Besides, the traditional transition matrix is mostly limited to model instance-independent label noise, which may not perform well in practice. In this paper, we focus on learning with the mixed closed-set and open-set noisy labels. We address the aforementioned issues by extending the traditional transition matrix to be able to model mixed label noise, and further to the cluster-dependent transition matrix to better combat the instance-dependent label noise in real-world applications. We term the proposed transition matrix as the cluster-dependent extended transition matrix. An unbiased estimator (i.e., extended T-estimator) has been designed to estimate the cluster-dependent extended transition matrix by only exploiting the noisy data. Comprehensive experiments validate that our method can better cope with realistic label noise, following its more robust performance than the prior state-of-the-art label-noise learning methods.

摘要

噪声转移矩阵T反映了真实标签翻转成噪声标签的概率,对于建模标签噪声和构建统计上一致的分类器至关重要。传统的转移矩阵仅限于对封闭集标签噪声进行建模,其中噪声训练数据在噪声标签集中具有真实类别标签。使用这样的转移矩阵来对开放集标签噪声进行建模是不合适的,在开放集标签噪声中,一些真实类别标签在噪声标签集之外。因此,当考虑更现实的情况,即封闭集和开放集标签噪声都出现时,先前的工作会给出不可信的解决方案。此外,传统的转移矩阵大多限于对实例独立的标签噪声进行建模,这在实际中可能表现不佳。在本文中,我们专注于使用混合的封闭集和开放集噪声标签进行学习。我们通过扩展传统的转移矩阵来解决上述问题,使其能够对混合标签噪声进行建模,并进一步扩展到聚类相关的转移矩阵,以更好地应对实际应用中实例相关的标签噪声。我们将提出的转移矩阵称为聚类相关扩展转移矩阵。已经设计了一种无偏估计器(即扩展T估计器),仅通过利用噪声数据来估计聚类相关扩展转移矩阵。全面的实验验证了我们的方法能够更好地应对现实的标签噪声,其性能比先前的最先进标签噪声学习方法更稳健。

相似文献

1
Extended T: Learning With Mixed Closed-Set and Open-Set Noisy Labels.
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3047-3058. doi: 10.1109/TPAMI.2022.3180545. Epub 2023 Feb 3.
2
A Parametrical Model for Instance-Dependent Label Noise.
IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):14055-14068. doi: 10.1109/TPAMI.2023.3301876. Epub 2023 Nov 3.
3
Learning Student Network Under Universal Label Noise.
IEEE Trans Image Process. 2024;33:4363-4376. doi: 10.1109/TIP.2024.3430539. Epub 2024 Aug 2.
5
Class-Wise Denoising for Robust Learning Under Label Noise.
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):2835-2848. doi: 10.1109/TPAMI.2022.3178690. Epub 2023 Feb 3.
6
Learning With Auxiliary Less-Noisy Labels.
IEEE Trans Neural Netw Learn Syst. 2017 Jul;28(7):1716-1721. doi: 10.1109/TNNLS.2016.2546956. Epub 2016 Apr 6.
7
Cognition-Driven Structural Prior for Instance-Dependent Label Transition Matrix Estimation.
IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):3730-3743. doi: 10.1109/TNNLS.2023.3347633. Epub 2025 Feb 6.
8
Uncertainty-guided label correction with wavelet-transformed discriminative representation enhancement.
Neural Netw. 2024 Aug;176:106383. doi: 10.1016/j.neunet.2024.106383. Epub 2024 May 9.
9
Partial Multi-Label Learning With Noisy Label Identification.
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3676-3687. doi: 10.1109/TPAMI.2021.3059290. Epub 2022 Jun 3.
10
BadLabel: A Robust Perspective on Evaluating and Enhancing Label-Noise Learning.
IEEE Trans Pattern Anal Mach Intell. 2024 Jun;46(6):4398-4409. doi: 10.1109/TPAMI.2024.3355425. Epub 2024 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验