Suppr超能文献

通用标签噪声下的学习型学生网络

Learning Student Network Under Universal Label Noise.

作者信息

Tang Jialiang, Jiang Ning, Zhu Hongyuan, Tianyi Zhou Joey, Gong Chen

出版信息

IEEE Trans Image Process. 2024;33:4363-4376. doi: 10.1109/TIP.2024.3430539. Epub 2024 Aug 2.

Abstract

Data-free knowledge distillation aims to learn a small student network from a large pre-trained teacher network without the aid of original training data. Recent works propose to gather alternative data from the Internet for training student network. In a more realistic scenario, the data on the Internet contains two types of label noise, namely: 1) closed-set label noise, where some examples belong to the known categories but are mislabeled; and 2) open-set label noise, where the true labels of some mislabeled examples are outside the known categories. However, the latter is largely ignored by existing works, leading to limited student network performance. Therefore, this paper proposes a novel data-free knowledge distillation paradigm by utilizing a webly-collected dataset under universal label noise, which means both closed-set and open-set label noise should be tackled. Specifically, we first split the collected noisy dataset into clean set, closed noisy set, and open noisy set based on the prediction uncertainty of various data types. For the closed-set noisy examples, their labels are refined by teacher network. Meanwhile, a noise-robust hybrid contrastive learning is performed on the clean set and refined closed noisy set to encourage student network to learn the categorical and instance knowledge inherited by teacher network. For the open-set noisy examples unexplored by previous work, we regard them as unlabeled and conduct self-supervised learning on them to enrich the supervision signal for student network. Intensive experimental results on image classification tasks demonstrate that our approach can achieve superior performance to state-of-the-art data-free knowledge distillation methods.

摘要

无数据知识蒸馏旨在在无需原始训练数据的情况下,从大型预训练教师网络中学习一个小型学生网络。近期的工作提出从互联网收集替代数据来训练学生网络。在更现实的场景中,互联网上的数据包含两种标签噪声,即:1)闭集标签噪声,其中一些示例属于已知类别但被错误标注;2)开集标签噪声,其中一些错误标注示例的真实标签在已知类别之外。然而,现有工作很大程度上忽略了后者,导致学生网络性能有限。因此,本文提出了一种新颖的无数据知识蒸馏范式,通过在通用标签噪声下利用网络收集的数据集,这意味着闭集和开集标签噪声都应得到处理。具体而言,我们首先根据各种数据类型的预测不确定性,将收集到的噪声数据集划分为干净集、闭集噪声集和开集噪声集。对于闭集噪声示例,其标签由教师网络进行细化。同时,在干净集和细化后的闭集噪声集上进行抗噪声混合对比学习,以鼓励学生网络学习教师网络继承的类别和实例知识。对于先前工作未探索的开集噪声示例,我们将它们视为未标注数据并对其进行自监督学习,以丰富学生网络的监督信号。在图像分类任务上的大量实验结果表明,我们的方法能够取得优于现有无数据知识蒸馏方法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验