Division of Biostatistics, College of Public Health, the Ohio State University, Columbus, Ohio, USA.
Biometrics Department, Servier Pharmaceuticals, Boston, Massachusetts, USA.
J Biopharm Stat. 2022 Jul 4;32(4):582-599. doi: 10.1080/10543406.2022.2080696. Epub 2022 Jun 8.
In clinical studies that utilize real-world data, time-to-event outcomes are often germane to scientific questions of interest. Two main obstacles are the presence of non-proportional hazards and confounding bias. Existing methods that could adjust for NPH or confounding bias, but no previous work delineated the complexity of simultaneous adjustments for both. In this paper, a propensity score stratified MaxCombo and weighted Cox model is proposed. This model can adjust for confounding bias and NPH and can be pre-specified when NPH pattern is unknown in advance. The method has robust performance as demonstrated in simulation studies and in a case study.
在利用真实世界数据进行的临床研究中,事件发生时间的结果通常与科学关注的问题有关。主要有两个障碍,即存在非比例风险和混杂偏倚。现有的方法可以调整非比例风险或混杂偏倚,但以前没有工作描述同时调整这两者的复杂性。在本文中,提出了一种倾向评分分层 MaxCombo 和加权 Cox 模型。该模型可以调整混杂偏倚和非比例风险,并且在事先不知道非比例风险模式时可以预先指定。该方法在模拟研究和案例研究中表现出稳健的性能。