Suppr超能文献

非比例风险生存终点的真实世界数据间接比较的统计学方法。

Statistical methods of indirect comparison with real-world data for survival endpoint under non-proportional hazards.

机构信息

Division of Biostatistics, College of Public Health, the Ohio State University, Columbus, Ohio, USA.

Biometrics Department, Servier Pharmaceuticals, Boston, Massachusetts, USA.

出版信息

J Biopharm Stat. 2022 Jul 4;32(4):582-599. doi: 10.1080/10543406.2022.2080696. Epub 2022 Jun 8.

Abstract

In clinical studies that utilize real-world data, time-to-event outcomes are often germane to scientific questions of interest. Two main obstacles are the presence of non-proportional hazards and confounding bias. Existing methods that could adjust for NPH or confounding bias, but no previous work delineated the complexity of simultaneous adjustments for both. In this paper, a propensity score stratified MaxCombo and weighted Cox model is proposed. This model can adjust for confounding bias and NPH and can be pre-specified when NPH pattern is unknown in advance. The method has robust performance as demonstrated in simulation studies and in a case study.

摘要

在利用真实世界数据进行的临床研究中,事件发生时间的结果通常与科学关注的问题有关。主要有两个障碍,即存在非比例风险和混杂偏倚。现有的方法可以调整非比例风险或混杂偏倚,但以前没有工作描述同时调整这两者的复杂性。在本文中,提出了一种倾向评分分层 MaxCombo 和加权 Cox 模型。该模型可以调整混杂偏倚和非比例风险,并且在事先不知道非比例风险模式时可以预先指定。该方法在模拟研究和案例研究中表现出稳健的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验