Suppr超能文献

用于高效胺氧化偶联的可见光响应型多金属氧酸盐基金属有机框架中增强的载流子分离

Enhanced Carrier Separation in Visible-Light-Responsive Polyoxometalate-Based Metal-Organic Frameworks for Highly Efficient Oxidative Coupling of Amines.

作者信息

Liu Yanan, Ji Kaihui, Wang Jing, Li Huafeng, Zhu Xueyu, Ma Pengtao, Niu Jingyang, Wang Jingping

机构信息

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Jun 22;14(24):27882-27890. doi: 10.1021/acsami.2c05654. Epub 2022 Jun 8.

Abstract

Photocatalytic technology is widely studied, while it comes with drawbacks such as low sunlight utilization efficiency and high carrier recombination rates. Herein, for the first time, we present two crystalline polyoxometalate (POM)-based metal-organic frameworks (POMOFs), {Cd(DMF)Ru(bpy)(dcbpy)(DMF)} DMF (, POMs = [PMoMoO], = 5; , POMs = [SiWO], = 4) through assembling the photosensitizer [Ru(bpy)(Hdcbpy)]Cl and POMs into a single framework. The assembly not only enhances light absorption in the visible light regime but also improves carrier separation efficiency; atop of that, both POMOFs demonstrate activities in the photocatalytic oxidative coupling of amines. Particularly, enables the quantitative completion of oxidative coupling of benzylamine reaction within 30 min (yield = 99.6%) with a high turnover frequency (TOF = 6631.6 h). To our knowledge, the catalyst outperforms any other photocatalysts previously reported in similar use cases where TOF values were usually obtained <2000 h.

摘要

光催化技术得到了广泛研究,但其存在诸如太阳光利用效率低和载流子复合率高等缺点。在此,我们首次通过将光敏剂[Ru(bpy)(Hdcbpy)]Cl和多金属氧酸盐(POMs)组装到单个框架中,展示了两种基于结晶多金属氧酸盐(POM)的金属有机框架(POMOFs),{Cd(DMF)Ru(bpy)(dcbpy)(DMF)} DMF(,POMs = [PMoMoO], = 5;,POMs = [SiWO], = 4)。这种组装不仅增强了在可见光区域的光吸收,还提高了载流子分离效率;除此之外,两种POMOFs均在胺的光催化氧化偶联反应中表现出活性。特别地, 能在30分钟内使苄胺氧化偶联反应定量完成(产率 = 99.6%),且具有高周转频率(TOF = 6631.6 h)。据我们所知,在通常TOF值<2000 h 的类似应用案例中,该 催化剂的性能优于此前报道的任何其他光催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验