Suppr超能文献

基于大感受野梯度算子的手指静脉图像 ROI 提取方法,用于关节腔的准确定位。

An ROI Extraction Method of Finger Vein Images Based on Large Receptive Field Gradient Operator for Accurate Localization of Joint Cavity.

机构信息

School of Computer Science and Engineering, Changchun University of Technology, Changchun 130102, China.

出版信息

J Healthc Eng. 2022 May 30;2022:9231637. doi: 10.1155/2022/9231637. eCollection 2022.

Abstract

Region of interest (ROI) extraction is a key step in finger vein recognition preprocessing. The current method takes the finger region in the vein image as the ROI, but this method cannot obtain better recognition accuracy because it only removes the background noise of the image and ignores factors such as the position and shape of the finger. To solve this problem, we limited the ROI to a fixed region between two finger joint cavities, proposed a new large receptive field gradient operator, and designed and implemented a new method for ROI extraction. It uses a large receptive field to search the target, which is similar to human vision, thus solving the problem of difficult ROI localization for images with large gradient areas. Moreover, for external factors such as noise and uneven illumination in the vein image, the interference factors can be eliminated by averaging them to a larger range with a larger size operator to improve the accuracy of the subsequent matching recognition. To verify the effectiveness of the proposed method, we conducted sufficient matching experiments on three public finger vein datasets. On various datasets, our method significantly reduced the identified EER value, with the lowest EER value reaching 0.96%. The experimental results show that the proposed ROI extraction method can effectively eliminate the influence of finger position, finger shape, and other factors on the subsequent recognition performance, accurately locate the finger joint cavity, and effectively improve the recognition performance.

摘要

感兴趣区域(ROI)提取是手指静脉识别预处理的关键步骤。目前的方法将静脉图像中的手指区域作为 ROI,但这种方法无法获得更好的识别精度,因为它仅去除了图像的背景噪声,而忽略了手指的位置和形状等因素。为了解决这个问题,我们将 ROI 限制在两个指关节腔之间的固定区域内,提出了一种新的大感受野梯度算子,并设计和实现了一种新的 ROI 提取方法。它使用大感受野来搜索目标,这类似于人类视觉,从而解决了梯度区域较大的图像中 ROI 定位困难的问题。此外,对于静脉图像中的噪声和不均匀光照等外部因素,可以通过使用较大的算子将它们平均到较大的范围来消除干扰因素,从而提高后续匹配识别的准确性。为了验证所提出方法的有效性,我们在三个公开的手指静脉数据集上进行了充分的匹配实验。在各种数据集上,我们的方法显著降低了识别的 EER 值,最低 EER 值达到 0.96%。实验结果表明,所提出的 ROI 提取方法可以有效地消除手指位置、手指形状等因素对后续识别性能的影响,准确地定位指关节腔,并有效地提高识别性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db07/9170421/d0a8e567c33e/JHE2022-9231637.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验