Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea.
Sensors (Basel). 2017 Jun 6;17(6):1297. doi: 10.3390/s17061297.
Conventional finger-vein recognition systems perform recognition based on the finger-vein lines extracted from the input images or image enhancement, and texture feature extraction from the finger-vein images. In these cases, however, the inaccurate detection of finger-vein lines lowers the recognition accuracy. In the case of texture feature extraction, the developer must experimentally decide on a form of the optimal filter for extraction considering the characteristics of the image database. To address this problem, this research proposes a finger-vein recognition method that is robust to various database types and environmental changes based on the convolutional neural network (CNN). In the experiments using the two finger-vein databases constructed in this research and the SDUMLA-HMT finger-vein database, which is an open database, the method proposed in this research showed a better performance compared to the conventional methods.
传统的指静脉识别系统基于从输入图像中提取的指静脉线或图像增强进行识别,并从指静脉图像中提取纹理特征。然而,在这些情况下,指静脉线的不准确检测会降低识别精度。在纹理特征提取的情况下,开发人员必须根据图像数据库的特点,通过实验来确定最佳滤波器的形式。为了解决这个问题,本研究提出了一种基于卷积神经网络(CNN)的对各种数据库类型和环境变化具有鲁棒性的指静脉识别方法。在使用本研究构建的两个指静脉数据库和一个开放数据库 SDUMLA-HMT 指静脉数据库进行的实验中,与传统方法相比,本研究提出的方法表现出更好的性能。