Suppr超能文献

一种用于在项目反应理论(IRT)中对过度离散、不足离散和等离散计数数据进行建模的灵活方法:双参数康威-麦克斯韦-泊松模型。

A flexible approach to modelling over-, under- and equidispersed count data in IRT: The Two-Parameter Conway-Maxwell-Poisson Model.

作者信息

Beisemann Marie

机构信息

Department of Statistics, TU Dortmund University, Germany.

出版信息

Br J Math Stat Psychol. 2022 Nov;75(3):411-443. doi: 10.1111/bmsp.12273. Epub 2022 Jun 9.

Abstract

Several psychometric tests and self-reports generate count data (e.g., divergent thinking tasks). The most prominent count data item response theory model, the Rasch Poisson Counts Model (RPCM), is limited in applicability by two restrictive assumptions: equal item discriminations and equidispersion (conditional mean equal to conditional variance). Violations of these assumptions lead to impaired reliability and standard error estimates. Previous work generalized the RPCM but maintained some limitations. The two-parameter Poisson counts model allows for varying discriminations but retains the equidispersion assumption. The Conway-Maxwell-Poisson Counts Model allows for modelling over- and underdispersion (conditional mean less than and greater than conditional variance, respectively) but still assumes constant discriminations. The present work introduces the Two-Parameter Conway-Maxwell-Poisson (2PCMP) model which generalizes these three models to allow for varying discriminations and dispersions within one model, helping to better accommodate data from count data tests and self-reports. A marginal maximum likelihood method based on the EM algorithm is derived. An implementation of the 2PCMP model in R and C++ is provided. Two simulation studies examine the model's statistical properties and compare the 2PCMP model to established models. Data from divergent thinking tasks are reanalysed with the 2PCMP model to illustrate the model's flexibility and ability to test assumptions of special cases.

摘要

几种心理测量测试和自我报告产生计数数据(例如,发散性思维任务)。最著名的计数数据项目反应理论模型,即拉施泊松计数模型(RPCM),由于两个限制性假设而在适用性上受到限制:项目区分度相等和等离散性(条件均值等于条件方差)。违反这些假设会导致可靠性和标准误差估计受损。先前的工作对RPCM进行了推广,但仍存在一些局限性。两参数泊松计数模型允许区分度变化,但保留了等离散性假设。康威 - 麦克斯韦 - 泊松计数模型允许对过度离散和不足离散进行建模(条件均值分别小于和大于条件方差),但仍然假设区分度恒定。本研究引入了两参数康威 - 麦克斯韦 - 泊松(2PCMP)模型,该模型将这三个模型进行了推广,允许在一个模型中区分度和离散度都变化,有助于更好地适应来自计数数据测试和自我报告的数据。推导了一种基于期望最大化(EM)算法的边际极大似然方法。提供了2PCMP模型在R和C++中的实现。两项模拟研究检验了该模型的统计特性,并将2PCMP模型与已有的模型进行了比较。使用2PCMP模型对来自发散性思维任务的数据进行了重新分析,以说明该模型的灵活性以及检验特殊情况假设的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验