Choi Hee Jae, Ko Myoungjae, Kim In Ho, Yu Hayoung, Kim Jin Yong, Yun Taeyeong, Yang Joon Seon, Yang Geon Gug, Jeong Hyeon Su, Moon Myeong Hee, Kim Sang Ouk
National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
ACS Nano. 2022 Jun 28;16(6):9172-9182. doi: 10.1021/acsnano.2c01402. Epub 2022 Jun 9.
Many interesting properties of 2D materials and their assembled structures are strongly dependent on the lateral size and size distribution of 2D materials. Accordingly, effective size separation of polydisperse 2D sheets is critical for desirable applications. Here, we introduce flow field-flow fractionation (FlFFF) for a wide-range size fractionation of graphene oxide (GO) up to 100 μm. Two different separation mechanisms are identified for FlFFF, including normal mode and steric/hyperlayer mode, to size fractionate wide size-distributed GOs while employing a crossflow field for either diffusion or size-controlled migration of GO. Obviously, the 2D GO sheet reveals size separation behavior distinctive from typical spherical particles arising from its innate planar geometry. We also investigate 2D sheet size-dependent mechanical and electrical properties of three different graphene fibers produced from size-fractionated GOs. This FlFFF-based size selection methodology can be used as a generic approach for effective wide-range size separation for 2D materials, including rGO, TMDs, and MXene.
二维材料及其组装结构的许多有趣特性强烈依赖于二维材料的横向尺寸和尺寸分布。因此,多分散二维薄片的有效尺寸分离对于理想应用至关重要。在此,我们引入了流场-流分级法(FlFFF),用于对氧化石墨烯(GO)进行高达100μm的宽范围尺寸分级。针对FlFFF确定了两种不同的分离机制,包括常规模式和空间/超层模式,以对宽尺寸分布的氧化石墨烯进行尺寸分级,同时采用错流场实现氧化石墨烯的扩散或尺寸控制迁移。显然,二维氧化石墨烯薄片因其固有的平面几何形状而表现出与典型球形颗粒不同的尺寸分离行为。我们还研究了由尺寸分级的氧化石墨烯制备的三种不同石墨烯纤维的二维薄片尺寸依赖性机械和电学性质。这种基于FlFFF的尺寸选择方法可作为一种通用方法,用于对包括还原氧化石墨烯(rGO)、过渡金属二卤化物(TMDs)和MXene在内的二维材料进行有效的宽范围尺寸分离。