Suppr超能文献

用于锂离子电池的S掺杂LiFePO@N/S掺杂碳核壳结构复合材料的简便合成

Facile synthesis of S-doped LiFePO@N/S-doped carbon core-shell structured composites for lithium-ion batteries.

作者信息

Zhang Baoquan, Wang Shuzhong, Liu Lu, Wang Jinlong, Liu Wei, Yang Jianqiao

机构信息

Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, 28, Xianning West Road, Xi'an, Shaanxi 710049, People's Republic of China.

出版信息

Nanotechnology. 2022 Jul 13;33(40). doi: 10.1088/1361-6528/ac7732.

Abstract

Heteroatom-doped carbon can significantly improve the electrochemical performance of LiFePOcathodes, but it is limited by the complex preparation process and expensive dopants. A self-assembled S-doped LiFePO@N/S-doped C core-shell structured composites were synthesized by a convenient solvothermal method are reported. The structure and the electrochemical performance of the composites were characterized. In the S-doped LiFePO@N/S-doped C composites, the glucose-derived carbon microspheres were attached by LiFePO/C particles to form secondary particles in the core-shell structure. The thioacetamide regulated the morphology of LiFePO/C particles and provided N and S atoms to dope the composites. The S-doped LiFePO@N/S-doped C composites delivered specific discharge capacities of 157.81 mAh gat 0.1 C and 121.26 mAh gat 5 C, and capacity retention of 99.88% after 100 charge/discharge cycles. The excellent electrochemical performance of the S-doped LiFePO@N/S-doped C composites can be attributed to the synergism of thioacetamide and glucose.

摘要

杂原子掺杂的碳可以显著改善磷酸铁锂阴极的电化学性能,但受到复杂制备工艺和昂贵掺杂剂的限制。本文报道了通过简便的溶剂热法合成了一种自组装的硫掺杂磷酸铁锂@氮/硫掺杂碳核壳结构复合材料。对该复合材料的结构和电化学性能进行了表征。在硫掺杂的磷酸铁锂@氮/硫掺杂碳复合材料中,葡萄糖衍生的碳微球与磷酸铁锂/碳颗粒相连,在核壳结构中形成二次颗粒。硫代乙酰胺调节了磷酸铁锂/碳颗粒的形貌,并为复合材料提供氮和硫原子进行掺杂。硫掺杂的磷酸铁锂@氮/硫掺杂碳复合材料在0.1 C时的比放电容量为157.81 mAh/g,在5 C时为121.26 mAh/g,在100次充放电循环后的容量保持率为99.88%。硫掺杂的磷酸铁锂@氮/硫掺杂碳复合材料优异的电化学性能可归因于硫代乙酰胺和葡萄糖的协同作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验