Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan.
J Biol Chem. 2022 Aug;298(8):102109. doi: 10.1016/j.jbc.2022.102109. Epub 2022 Jun 6.
Collagenase from the gram-negative bacterium Grimontia hollisae strain 1706B (Ghcol) degrades collagen more efficiently even than clostridial collagenase, the most widely used industrial collagenase. However, the structural determinants facilitating this efficiency are unclear. Here, we report the crystal structures of ligand-free and Gly-Pro-hydroxyproline (Hyp)-complexed Ghcol at 2.2 and 2.4 Å resolution, respectively. These structures revealed that the activator and peptidase domains in Ghcol form a saddle-shaped structure with one zinc ion and four calcium ions. In addition, the activator domain comprises two homologous subdomains, whereas zinc-bound water was observed in the ligand-free Ghcol. In the ligand-complexed Ghcol, we found two Gly-Pro-Hyp molecules, each bind at the active site and at two surfaces on the duplicate subdomains of the activator domain facing the active site, and the nucleophilic water is replaced by the carboxyl oxygen of Hyp at the P1 position. Furthermore, all Gly-Pro-Hyp molecules bound to Ghcol have almost the same conformation as Pro-Pro-Gly motif in model collagen (Pro-Pro-Gly), suggesting these three sites contribute to the unwinding of the collagen triple helix. A comparison of activities revealed that Ghcol exhibits broader substrate specificity than clostridial collagenase at the P2 and P2' positions, which may be attributed to the larger space available for substrate binding at the S2 and S2' sites in Ghcol. Analysis of variants of three active-site Tyr residues revealed that mutation of Tyr564 affected catalysis, whereas mutation of Tyr476 or Tyr555 affected substrate recognition. These results provide insights into the substrate specificity and mechanism of G. hollisae collagenase.
来自革兰氏阴性细菌 Grimontia hollisae 1706B 菌株(Ghcol)的胶原酶比最广泛使用的工业胶原酶梭菌胶原酶更有效地降解胶原蛋白。然而,促进这种效率的结构决定因素尚不清楚。在这里,我们分别报告了配体自由和 Gly-Pro-hydroxyproline(Hyp)复合物结合的 Ghcol 的晶体结构,分辨率分别为 2.2 和 2.4Å。这些结构表明,Ghcol 的激活剂和肽酶结构域形成马鞍形结构,其中包含一个锌离子和四个钙离子。此外,激活剂结构域包含两个同源亚结构域,而在配体自由的 Ghcol 中观察到锌结合水。在配体结合的 Ghcol 中,我们发现了两个 Gly-Pro-Hyp 分子,每个分子都结合在活性位点和激活剂结构域的两个面对活性位点的重复亚结构域的表面上,亲核水被 P1 位置的 Hyp 羧基氧取代。此外,与 Ghcol 结合的所有 Gly-Pro-Hyp 分子的构象几乎与模型胶原(Pro-Pro-Gly)中的 Pro-Pro-Gly 基序相同,表明这三个位点有助于胶原蛋白三螺旋的展开。对活性的比较表明,Ghcol 在 P2 和 P2'位置表现出比梭菌胶原酶更广泛的底物特异性,这可能归因于 Ghcol 中 S2 和 S2'位点可供底物结合的空间更大。对三个活性位点 Tyr 残基的突变体分析表明,Tyr564 的突变影响催化,而 Tyr476 或 Tyr555 的突变影响底物识别。这些结果为 G. hollisae 胶原酶的底物特异性和机制提供了深入了解。