Suppr超能文献

从由化学合成粉末制备的块状材料库中快速测定多种性质。

Rapid multiple property determination from bulk materials libraries prepared from chemically synthesized powders.

作者信息

Tan Li Ping, Chaudhary V, Tsakadze Z, Ramanujan R V

机构信息

School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

出版信息

Sci Rep. 2022 Jun 9;12(1):9504. doi: 10.1038/s41598-022-13691-3.

Abstract

A variety of high-performance materials are utilized in electrical, electronic, and mechanical systems. Such systems account for a significant fraction of the world's electricity consumption. The next generation of such systems urgently require new material compositions which possess a better combination of both structural and functional properties. Only accelerated methodologies can rapidly determine the required multiple property set. Hence, a range of iron-cobalt-nickel ternary alloy composition powders were chemically synthesized. Compositionally graded bulk materials libraries were prepared by spark plasma sintering of these powders. A multiple property set of the crystal structure, magnetic, mechanical, and electrical properties were determined for a range of compositions. This property set revealed that a good combination of magnetic and mechanical properties can be obtained from FeCoNi, high electrical resistivity from FeCoNi and high saturation magnetization as well as high hardness from FeCoNi. Thus, this multiple property library, developed by accelerated methodologies, can be utilized to identify new ternary compositions satisfying diverse property sets relevant to next generation systems.

摘要

各种高性能材料被用于电气、电子和机械系统。这类系统占全球电力消耗的很大一部分。下一代此类系统迫切需要具有更好结构和功能特性组合的新材料成分。只有加速方法才能快速确定所需的多种性能组合。因此,通过化学合成制备了一系列铁钴镍三元合金成分粉末。通过对这些粉末进行放电等离子烧结制备了成分渐变的块状材料库。针对一系列成分测定了晶体结构、磁性、机械和电学性能的多种性能组合。该性能组合表明,FeCoNi可获得良好的磁性能和机械性能组合,FeCoNi具有高电阻率,FeCoNi具有高饱和磁化强度和高硬度。因此,通过加速方法开发的这个多种性能库可用于识别满足与下一代系统相关的各种性能组合的新三元成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2913/9184742/add58814411e/41598_2022_13691_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验