Suppr超能文献

石墨烯衍生物的缺陷密度依赖性pH响应:迈向pH敏感氧化石墨烯器件的发展

Defect Density-Dependent pH Response of Graphene Derivatives: Towards the Development of pH-Sensitive Graphene Oxide Devices.

作者信息

Angizi Shayan, Huang Xianxuan, Hong Lea, Akbar Md Ali, Selvaganapathy P Ravi, Kruse Peter

机构信息

Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada.

Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.

出版信息

Nanomaterials (Basel). 2022 May 25;12(11):1801. doi: 10.3390/nano12111801.

Abstract

In this study, we demonstrate that a highly pH-sensitive substrate could be fabricated by controlling the type and defect density of graphene derivatives. Nanomaterials from single-layer graphene resembling a defect-free structure to few-layer graphene and graphene oxide with high defect density were used to demonstrate the pH-sensing mechanisms of graphene. We show the presence of three competing mechanisms of pH sensitivity, including the availability of functional groups, the electrochemical double layer, and the ion trapping that determines the overall pH response. The graphene surface was selectively functionalized with hydroxyl, amine, and carboxyl groups to understand the role and density of the graphene pH-sensitive functional groups. Later, we establish the development of highly pH-sensitive graphene oxide by controlling its defect density. This research opens a new avenue for integrating micro-nano-sized pH sensors based on graphene derivatives into next-generation sensing platforms.

摘要

在本研究中,我们证明通过控制石墨烯衍生物的类型和缺陷密度可以制备出高度pH敏感的底物。使用从类似无缺陷结构的单层石墨烯到具有高缺陷密度的少层石墨烯和氧化石墨烯的纳米材料来证明石墨烯的pH传感机制。我们展示了三种相互竞争的pH敏感机制的存在,包括官能团的可用性、电化学双层和决定整体pH响应的离子捕获。对石墨烯表面进行羟基、胺基和羧基的选择性功能化,以了解石墨烯pH敏感官能团的作用和密度。随后,我们通过控制氧化石墨烯的缺陷密度建立了高度pH敏感的氧化石墨烯的开发方法。这项研究为将基于石墨烯衍生物的微纳尺寸pH传感器集成到下一代传感平台开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c9/9181870/e74ff73413fc/nanomaterials-12-01801-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验