Varikoti Rohith Anand, Fonseka Hewafonsekage Yasan Y, Kelly Maria S, Javidi Alex, Damre Mangesh, Mullen Sarah, Nugent Jimmie L, Gonzales Christopher M, Stan George, Dima Ruxandra I
Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
Data Sciences, Janssen Research and Development, Spring House, PA 19477, USA.
Nanomaterials (Basel). 2022 May 28;12(11):1849. doi: 10.3390/nano12111849.
Essential cellular processes of microtubule disassembly and protein degradation, which span lengths from tens of μm to nm, are mediated by specialized molecular machines with similar hexameric structure and function. Our molecular simulations at atomistic and coarse-grained scales show that both the microtubule-severing protein spastin and the caseinolytic protease ClpY, accomplish spectacular unfolding of their diverse substrates, a microtubule lattice and dihydrofolate reductase (DHFR), by taking advantage of mechanical anisotropy in these proteins. Unfolding of wild-type DHFR requires disruption of mechanically strong β-sheet interfaces near each terminal, which yields branched pathways associated with unzipping along soft directions and shearing along strong directions. By contrast, unfolding of circular permutant DHFR variants involves single pathways due to softer mechanical interfaces near terminals, but translocation hindrance can arise from mechanical resistance of partially unfolded intermediates stabilized by β-sheets. For spastin, optimal severing action initiated by pulling on a tubulin subunit is achieved through specific orientation of the machine versus the substrate (microtubule lattice). Moreover, changes in the strength of the interactions between spastin and a microtubule filament, which can be driven by the tubulin code, lead to drastically different outcomes for the integrity of the hexameric structure of the machine.
微管拆卸和蛋白质降解等基本细胞过程,其长度范围从几十微米到纳米,是由具有相似六聚体结构和功能的特殊分子机器介导的。我们在原子尺度和粗粒度尺度上的分子模拟表明,微管切割蛋白痉挛素和酪蛋白溶解蛋白酶ClpY,通过利用这些蛋白质中的机械各向异性,实现了其不同底物(微管晶格和二氢叶酸还原酶(DHFR))的惊人展开。野生型DHFR的展开需要破坏每个末端附近机械强度高的β-折叠界面,这会产生与沿软方向解链和沿强方向剪切相关的分支途径。相比之下,环状置换DHFR变体的展开由于末端附近较软的机械界面而涉及单一途径,但部分展开的中间体通过β-折叠稳定的机械阻力可能会导致转运障碍。对于痉挛素,通过拉动微管蛋白亚基引发的最佳切割作用是通过机器相对于底物(微管晶格) 的特定取向实现的。此外,痉挛素与微管丝之间相互作用强度的变化,可由微管蛋白编码驱动,会导致机器六聚体结构完整性产生截然不同的结果。