Kravats Andrea N, Tonddast-Navaei Sam, Stan George
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America.
PLoS Comput Biol. 2016 Jan 6;12(1):e1004675. doi: 10.1371/journal.pcbi.1004675. eCollection 2016 Jan.
Clp ATPases are powerful ring shaped nanomachines which participate in the degradation pathway of the protein quality control system, coupling the energy from ATP hydrolysis to threading substrate proteins (SP) through their narrow central pore. Repetitive cycles of sequential intra-ring ATP hydrolysis events induce axial excursions of diaphragm-forming central pore loops that effect the application of mechanical forces onto SPs to promote unfolding and translocation. We perform Langevin dynamics simulations of a coarse-grained model of the ClpY ATPase-SP system to elucidate the molecular details of unfolding and translocation of an α/β model protein. We contrast this mechanism with our previous studies which used an all-α SP. We find conserved aspects of unfolding and translocation mechanisms by allosteric ClpY, including unfolding initiated at the tagged C-terminus and translocation via a power stroke mechanism. Topology-specific aspects include the time scales, the rate limiting steps in the degradation pathway, the effect of force directionality, and the translocase efficacy. Mechanisms of ClpY-assisted unfolding and translocation are distinct from those resulting from non-allosteric mechanical pulling. Bulk unfolding simulations, which mimic Atomic Force Microscopy-type pulling, reveal multiple unfolding pathways initiated at the C-terminus, N-terminus, or simultaneously from both termini. In a non-allosteric ClpY ATPase pore, mechanical pulling with constant velocity yields larger effective forces for SP unfolding, while pulling with constant force results in simultaneous unfolding and translocation.
Clp ATP酶是强大的环形纳米机器,参与蛋白质质量控制系统的降解途径,将ATP水解产生的能量与底物蛋白(SP)通过其狭窄的中心孔道穿入相偶联。环内ATP水解事件的重复循环诱导形成隔膜的中心孔环的轴向偏移,从而对底物蛋白施加机械力以促进其展开和转运。我们对ClpY ATP酶-底物蛋白系统的粗粒度模型进行了朗之万动力学模拟,以阐明α/β模型蛋白展开和转运的分子细节。我们将这种机制与我们之前使用全α底物蛋白的研究进行了对比。我们发现变构ClpY的展开和转运机制有保守的方面,包括在标记的C末端起始展开并通过动力冲程机制进行转运。拓扑特异性方面包括时间尺度、降解途径中的限速步骤、力的方向性影响以及转位酶效率。ClpY辅助的展开和转运机制与非变构机械拉动产生的机制不同。模拟原子力显微镜式拉动的整体展开模拟揭示了从C末端、N末端或同时从两个末端起始的多种展开途径。在非变构ClpY ATP酶孔中,恒速机械拉动对底物蛋白展开产生更大的有效力,而恒力拉动则导致同时展开和转运。