Wang Mengyuan, Su Shizhuo, Zhong Xin, Kong Derui, Li Bo, Song Yujie, Jia Chunman, Chen Yifan
Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China.
Nanomaterials (Basel). 2022 Jun 3;12(11):1918. doi: 10.3390/nano12111918.
A novel redox-active organic-inorganic hybrid material (denoted as HTTFTB-TiO) based on tetrathiafulvalene derivatives and titanium dioxide with a micro/mesoporous nanomaterial structure has been synthesized via a facile sol-gel method. In this study, tetrathiafulvalene-3,4,5,6-tetrakis(4-benzoic acid) (HTTFTB) is an ideal electron-rich organic material and has been introduced into TiO for promoting photocatalytic H production under visible light irradiation. Notably, the optimized composites demonstrate remarkably enhanced photocatalytic H evolution performance with a maximum H evolution rate of 1452 μmol g h, which is much higher than the prototypical counterparts, the common dye-sensitized sample (denoted as HTTFTB-5.0/TiO) (390.8 μmol g h) and pure TiO (18.87 μmol g h). Moreover, the composites perform with excellent stability even after being used for seven time cycles. A series of characterizations of the morphological structure, the photoelectric physics performance and the photocatalytic activity of the hybrid reveal that the donor-acceptor structural HTTFTB and TiO have been combined robustly by covalent titanium ester during the synthesis process, which improves the stability of the hybrid nanomaterials, extends visible-light adsorption range and stimulates the separation of photogenerated charges. This work provides new insight for regulating precisely the structure of the fulvalene-based composite at the molecule level and enhances our in-depth fundamental understanding of the photocatalytic mechanism.
通过一种简便的溶胶-凝胶法合成了一种基于四硫富瓦烯衍生物和二氧化钛的具有微/介孔纳米材料结构的新型氧化还原活性有机-无机杂化材料(记为HTTFTB-TiO)。在本研究中,四硫富瓦烯-3,4,5,6-四(4-苯甲酸)(HTTFTB)是一种理想的富电子有机材料,已被引入TiO中以促进可见光照射下的光催化产氢。值得注意的是,优化后的复合材料表现出显著增强的光催化析氢性能,最大析氢速率为1452 μmol g⁻¹ h⁻¹,远高于典型的对应物、普通染料敏化样品(记为HTTFTB-5.0/TiO)(390.8 μmol g⁻¹ h⁻¹)和纯TiO(18.87 μmol g⁻¹ h⁻¹)。此外,即使经过七次循环使用,复合材料仍具有优异的稳定性。对该杂化材料的形态结构、光电物理性能和光催化活性进行的一系列表征表明,在合成过程中,供体-受体结构的HTTFTB和TiO通过共价钛酯牢固地结合在一起,这提高了杂化纳米材料的稳定性,扩展了可见光吸收范围,并促进了光生电荷的分离。这项工作为在分子水平上精确调控富瓦烯基复合材料的结构提供了新的见解,并增强了我们对光催化机理的深入基础理解。