Keum DooHo, Ko Young-Bae
LIG Nex1 Company Ltd., Seongnam 13488, Korea.
Department of AI Convergence Network, Ajou University, Suwon 16499, Korea.
Sensors (Basel). 2022 May 24;22(11):3975. doi: 10.3390/s22113975.
Mission-critical wireless sensor networks require a trustworthy and punctual routing protocol to ensure the worst-case end-to-end delay and reliability when transmitting mission-critical data collected by various sensors to gateways. In particular, the trustworthiness of mission-critical data must be guaranteed for decision-making and secure communications. However, it is a challenging issue to meet the requirement of both reliability and QoS in sensor networking environments where cyber-attacks may frequently occur and a lot of mission-critical data is generated. This study proposes a trust-based routing protocol that learns the trust elements using Q-learning to detect various attacks and ensure network performance. The proposed mechanism ensures the prompt detection of cyber threats that may occur in a mission-critical wireless sensor network and guarantees the trustworthy transfer of mission-critical sensor data. This paper introduces a distributed transmission technology that prioritizes the trustworthiness of mission-critical data through Q-learning results considering trustworthiness, QoS, and energy factors. It is a technology suitable for mission-critical wireless sensor network operational environments and can reliably operate resource-constrained devices. We implemented and performed a comprehensive evaluation of our scheme using the OPNET simulator. In addition, we measured packet delivery rates, throughput, survivability, and delay considering the characteristics of mission-critical sensor networks. The simulation results show an enhanced performance when compared with other mechanisms.
关键任务无线传感器网络需要一个可靠且准时的路由协议,以确保在将各种传感器收集的关键任务数据传输到网关时,最坏情况下的端到端延迟和可靠性。特别是,必须保证关键任务数据的可信度,以用于决策和安全通信。然而,在可能频繁发生网络攻击且会生成大量关键任务数据的传感器网络环境中,满足可靠性和QoS的要求是一个具有挑战性的问题。本研究提出了一种基于信任的路由协议,该协议使用Q学习来学习信任元素,以检测各种攻击并确保网络性能。所提出的机制可确保及时检测关键任务无线传感器网络中可能出现的网络威胁,并保证关键任务传感器数据的可靠传输。本文介绍了一种分布式传输技术,该技术通过考虑可信度、QoS和能量因素的Q学习结果,将关键任务数据的可信度放在首位。它是一种适用于关键任务无线传感器网络运行环境的技术,并且可以可靠地运行资源受限的设备。我们使用OPNET模拟器对我们的方案进行了实现和全面评估。此外,我们还考虑关键任务传感器网络的特性,测量了数据包传输率、吞吐量、生存能力和延迟。仿真结果表明,与其他机制相比,该方案的性能有所提高。