Suppr超能文献

从 3D 立体相机数据集识别梨树,以开发使用 Mask R-CNN 的果实采摘机制。

Pear Recognition in an Orchard from 3D Stereo Camera Datasets to Develop a Fruit Picking Mechanism Using Mask R-CNN.

机构信息

Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.

Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.

出版信息

Sensors (Basel). 2022 May 31;22(11):4187. doi: 10.3390/s22114187.

Abstract

In orchard fruit picking systems for pears, the challenge is to identify the full shape of the soft fruit to avoid injuries while using robotic or automatic picking systems. Advancements in computer vision have brought the potential to train for different shapes and sizes of fruit using deep learning algorithms. In this research, a fruit recognition method for robotic systems was developed to identify pears in a complex orchard environment using a 3D stereo camera combined with Mask Region-Convolutional Neural Networks (Mask R-CNN) deep learning technology to obtain targets. This experiment used 9054 RGBA original images (3018 original images and 6036 augmented images) to create a dataset divided into a training, validation, and testing sets. Furthermore, we collected the dataset under different lighting conditions at different times which were high-light (9-10 am) and low-light (6-7 pm) conditions at JST, Tokyo Time, August 2021 (summertime) to prepare training, validation, and test datasets at a ratio of 6:3:1. All the images were taken by a 3D stereo camera which included PERFORMANCE, QUALITY, and ULTRA models. We used the PERFORMANCE model to capture images to make the datasets; the camera on the left generated depth images and the camera on the right generated the original images. In this research, we also compared the performance of different types with the R-CNN model (Mask R-CNN and Faster R-CNN); the mean Average Precisions (mAP) of Mask R-CNN and Faster R-CNN were compared in the same datasets with the same ratio. Each epoch in Mask R-CNN was set at 500 steps with total 80 epochs. And Faster R-CNN was set at 40,000 steps for training. For the recognition of pears, the Mask R-CNN, had the mAPs of 95.22% for validation set and 99.45% was observed for the testing set. On the other hand, mAPs were observed 87.9% in the validation set and 87.52% in the testing set using Faster R-CNN. The different models using the same dataset had differences in performance in gathering clustered pears and individual pear situations. Mask R-CNN outperformed Faster R-CNN when the pears are densely clustered at the complex orchard. Therefore, the 3D stereo camera-based dataset combined with the Mask R-CNN vision algorithm had high accuracy in detecting the individual pears from gathered pears in a complex orchard environment.

摘要

在梨树果园采摘系统中,挑战在于识别软水果的完整形状,以避免在使用机器人或自动采摘系统时受伤。计算机视觉的进步带来了使用深度学习算法对不同形状和大小的水果进行训练的潜力。在这项研究中,开发了一种用于机器人系统的水果识别方法,该方法使用 3D 立体相机结合 Mask Region-Convolutional Neural Networks(Mask R-CNN)深度学习技术来获取目标,以识别复杂果园环境中的梨。该实验使用 9054 个 RGBA 原始图像(3018 个原始图像和 6036 个增强图像)创建了一个数据集,该数据集分为训练集、验证集和测试集。此外,我们在不同时间的不同光照条件下收集了数据集,这些数据集是 2021 年 8 月(夏令时)日本时间上午 9-10 点(高光)和下午 6-7 点(低光)的条件。所有图像均由 3D 立体相机拍摄,其中包括 PERFORMANCE、QUALITY 和 ULTRA 型号。我们使用 PERFORMANCE 模型拍摄图像以制作数据集;左侧的相机生成深度图像,右侧的相机生成原始图像。在这项研究中,我们还比较了不同类型的与 R-CNN 模型(Mask R-CNN 和 Faster R-CNN)的性能;在相同的数据集和相同的比例下比较了 Mask R-CNN 和 Faster R-CNN 的平均精度(mAP)。Mask R-CNN 的每个 epoch 设置为 500 步,总共有 80 个 epoch。Faster R-CNN 的训练设置为 40000 步。对于梨的识别,Mask R-CNN 在验证集上的 mAPs 为 95.22%,在测试集上的 mAPs 为 99.45%。另一方面,在验证集和测试集上使用 Faster R-CNN 观察到的 mAPs 分别为 87.9%和 87.52%。使用相同数据集的不同模型在收集成簇的梨和单个梨的情况下性能存在差异。当密集聚集的梨树在复杂果园中时,Mask R-CNN 的性能优于 Faster R-CNN。因此,基于 3D 立体相机的数据集结合 Mask R-CNN 视觉算法在检测复杂果园环境中成堆的单个梨方面具有很高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8e0/9185418/4a4c1db436ef/sensors-22-04187-g001.jpg

相似文献

4
YOLO-P: An efficient method for pear fast detection in complex orchard picking environment.
Front Plant Sci. 2023 Jan 4;13:1089454. doi: 10.3389/fpls.2022.1089454. eCollection 2022.
5
Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN.
Sensors (Basel). 2022 Feb 5;22(3):1215. doi: 10.3390/s22031215.
8
Automatic Detection and Segmentation of Breast Cancer on MRI Using Mask R-CNN Trained on Non-Fat-Sat Images and Tested on Fat-Sat Images.
Acad Radiol. 2022 Jan;29 Suppl 1(Suppl 1):S135-S144. doi: 10.1016/j.acra.2020.12.001. Epub 2020 Dec 13.
9
Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images.
Neural Comput Appl. 2023;35(18):13597-13611. doi: 10.1007/s00521-023-08450-y. Epub 2023 Mar 15.
10
MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation.
PLoS One. 2023 Sep 22;18(9):e0291415. doi: 10.1371/journal.pone.0291415. eCollection 2023.

引用本文的文献

1
GreenFruitDetector: Lightweight green fruit detector in orchard environment.
PLoS One. 2024 Nov 14;19(11):e0312164. doi: 10.1371/journal.pone.0312164. eCollection 2024.
2
High-precision object detection network for automate pear picking.
Sci Rep. 2024 Jun 28;14(1):14965. doi: 10.1038/s41598-024-65750-6.
3
Development of a Deep Learning Model for the Analysis of Dorsal Root Ganglion Chromatolysis in Rat Spinal Stenosis.
J Pain Res. 2024 Apr 6;17:1369-1380. doi: 10.2147/JPR.S444055. eCollection 2024.
5
A novel hand-eye calibration method of picking robot based on TOF camera.
Front Plant Sci. 2023 Jan 17;13:1099033. doi: 10.3389/fpls.2022.1099033. eCollection 2022.

本文引用的文献

2
Real Time Pear Fruit Detection and Counting Using YOLOv4 Models and Deep SORT.
Sensors (Basel). 2021 Jul 14;21(14):4803. doi: 10.3390/s21144803.
3
Cascade R-CNN: High Quality Object Detection and Instance Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2021 May;43(5):1483-1498. doi: 10.1109/TPAMI.2019.2956516. Epub 2021 Apr 1.
4
DeepFruits: A Fruit Detection System Using Deep Neural Networks.
Sensors (Basel). 2016 Aug 3;16(8):1222. doi: 10.3390/s16081222.
5
Advances in Japanese pear breeding in Japan.
Breed Sci. 2016 Jan;66(1):46-59. doi: 10.1270/jsbbs.66.46. Epub 2016 Jan 1.
6
Region-Based Convolutional Networks for Accurate Object Detection and Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2016 Jan;38(1):142-58. doi: 10.1109/TPAMI.2015.2437384.
7
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验