Suppr超能文献

基于区域的卷积神经网络用于精确的目标检测和分割。

Region-Based Convolutional Networks for Accurate Object Detection and Segmentation.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2016 Jan;38(1):142-58. doi: 10.1109/TPAMI.2015.2437384.

Abstract

Object detection performance, as measured on the canonical PASCAL VOC Challenge datasets, plateaued in the final years of the competition. The best-performing methods were complex ensemble systems that typically combined multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 50 percent relative to the previous best result on VOC 2012-achieving a mAP of 62.4 percent. Our approach combines two ideas: (1) one can apply high-capacity convolutional networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data are scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, boosts performance significantly. Since we combine region proposals with CNNs, we call the resulting model an R-CNN or Region-based Convolutional Network. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

摘要

目标检测性能,如在规范的 PASCAL VOC 挑战赛数据集上所测,在竞赛的最后几年达到了瓶颈。表现最好的方法是复杂的集成系统,这些系统通常将多个底层图像特征与高层上下文相结合。在本文中,我们提出了一种简单且可扩展的检测算法,与 VOC 2012 上的最佳结果相比,平均精度(mAP)提高了 50%以上,达到了 62.4%。我们的方法结合了两个思路:(1)可以将高容量卷积网络(CNNs)应用于自下而上的区域提议,以定位和分割对象;(2)当标记的训练数据稀缺时,辅助任务的监督预训练,然后是特定领域的微调,显著提高了性能。由于我们将区域提议与 CNN 相结合,因此我们将得到的模型称为 R-CNN 或基于区域的卷积网络。完整系统的源代码可在 http://www.cs.berkeley.edu/~rbg/rcnn 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验