Suppr超能文献

多群组 Gorilla 部队优化器与多策略的用于无线传感器网络的 3D 节点定位。

Multi-Group Gorilla Troops Optimizer with Multi-Strategies for 3D Node Localization of Wireless Sensor Networks.

机构信息

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Sensors (Basel). 2022 Jun 3;22(11):4275. doi: 10.3390/s22114275.

Abstract

The localization problem of nodes in wireless sensor networks is often the focus of many researches. This paper proposes an opposition-based learning and parallel strategies Artificial Gorilla Troop Optimizer (OPGTO) for reducing the localization error. Opposition-based learning can expand the exploration space of the algorithm and significantly improve the global exploration ability of the algorithm. The parallel strategy divides the population into multiple groups for exploration, which effectively increases the diversity of the population. Based on this parallel strategy, we design communication strategies between groups for different types of optimization problems. To verify the optimized effect of the proposed OPGTO algorithm, it is tested on the CEC2013 benchmark function set and compared with Particle Swarm Optimization (PSO), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA) and Artificial Gorilla Troops Optimizer (GTO). Experimental studies show that OPGTO has good optimization ability, especially on complex multimodal functions and combinatorial functions. Finally, we apply OPGTO algorithm to 3D localization of wireless sensor networks in the real terrain. Experimental results proved that OPGTO can effectively reduce the localization error based on Time Difference of Arrival (TDOA).

摘要

无线传感器网络中的节点定位问题通常是许多研究的焦点。本文提出了一种基于对分学习和并行策略的人工大猩猩群优化算法(OPGTO),以降低定位误差。基于对分学习可以扩展算法的探索空间,显著提高算法的全局探索能力。并行策略将种群划分为多个组进行探索,有效地增加了种群的多样性。在此并行策略的基础上,我们为不同类型的优化问题设计了组间通信策略。为了验证所提出的 OPGTO 算法的优化效果,我们在 CEC2013 基准函数集上进行了测试,并与粒子群优化算法(PSO)、正弦余弦算法(SCA)、鲸鱼优化算法(WOA)和人工大猩猩群优化算法(GTO)进行了比较。实验研究表明,OPGTO 具有良好的优化能力,特别是在复杂的多模态函数和组合函数上。最后,我们将 OPGTO 算法应用于真实地形中的无线传感器网络 3D 定位。实验结果证明,OPGTO 可以有效地基于到达时间差(TDOA)降低定位误差。

相似文献

5
Research on Coverage Optimization in a WSN Based on an Improved COOT Bird Algorithm.
Sensors (Basel). 2022 Apr 28;22(9):3383. doi: 10.3390/s22093383.
7
An Opposition-Based Learning Black Hole Algorithm for Localization of Mobile Sensor Network.
Sensors (Basel). 2023 May 6;23(9):4520. doi: 10.3390/s23094520.
9
Adaptive Node Clustering for Underwater Sensor Networks.
Sensors (Basel). 2021 Jun 30;21(13):4514. doi: 10.3390/s21134514.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验