Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt.
Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, 12613, Egypt.
Sci Rep. 2024 Apr 1;14(1):7650. doi: 10.1038/s41598-024-57098-8.
This study presents an advanced metaheuristic approach termed the Enhanced Gorilla Troops Optimizer (EGTO), which builds upon the Marine Predators Algorithm (MPA) to enhance the search capabilities of the Gorilla Troops Optimizer (GTO). Like numerous other metaheuristic algorithms, the GTO encounters difficulties in preserving convergence accuracy and stability, notably when tackling intricate and adaptable optimization problems, especially when compared to more advanced optimization techniques. Addressing these challenges and aiming for improved performance, this paper proposes the EGTO, integrating high and low-velocity ratios inspired by the MPA. The EGTO technique effectively balances exploration and exploitation phases, achieving impressive results by utilizing fewer parameters and operations. Evaluation on a diverse array of benchmark functions, comprising 23 established functions and ten complex ones from the CEC2019 benchmark, highlights its performance. Comparative analysis against established optimization techniques reveals EGTO's superiority, consistently outperforming its counterparts such as tuna swarm optimization, grey wolf optimizer, gradient based optimizer, artificial rabbits optimization algorithm, pelican optimization algorithm, Runge Kutta optimization algorithm (RUN), and original GTO algorithms across various test functions. Furthermore, EGTO's efficacy extends to addressing seven challenging engineering design problems, encompassing three-bar truss design, compression spring design, pressure vessel design, cantilever beam design, welded beam design, speed reducer design, and gear train design. The results showcase EGTO's robust convergence rate, its adeptness in locating local/global optima, and its supremacy over alternative methodologies explored.
本研究提出了一种称为增强型猩猩部队优化器(EGTO)的高级元启发式方法,它基于海洋捕食者算法(MPA)来增强猩猩部队优化器(GTO)的搜索能力。与许多其他元启发式算法一样,GTO 在保持收敛精度和稳定性方面存在困难,特别是在处理复杂和适应性强的优化问题时,与更先进的优化技术相比更是如此。为了应对这些挑战并提高性能,本文提出了 EGTO,它集成了受 MPA 启发的高低速度比。EGTO 技术有效地平衡了探索和开发阶段,通过使用更少的参数和操作实现了令人印象深刻的结果。在一系列基准函数上进行评估,包括 23 个已建立的函数和来自 CEC2019 基准的 10 个复杂函数,突出了其性能。与已建立的优化技术的比较分析表明 EGTO 的优越性,它始终优于金枪鱼群优化、灰狼优化、基于梯度的优化、人工兔子优化算法、鹈鹕优化算法、Runge Kutta 优化算法(RUN)和原始 GTO 算法等其他算法,在各种测试函数中表现出色。此外,EGTO 的功效还扩展到解决七个具有挑战性的工程设计问题,包括三杆桁架设计、压缩弹簧设计、压力容器设计、悬臂梁设计、焊接梁设计、减速器设计和齿轮传动设计。结果表明 EGTO 具有强大的收敛速度、定位局部/全局最优解的能力以及优于所探索的替代方法的优越性。