Suppr超能文献

机器学习模型在高级 B 细胞淋巴瘤的诊断和预后预测中的应用。

Machine Learning Models for the Diagnosis and Prognosis Prediction of High-Grade B-Cell Lymphoma.

机构信息

Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China.

Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China.

出版信息

Front Immunol. 2022 May 24;13:919012. doi: 10.3389/fimmu.2022.919012. eCollection 2022.

Abstract

High-grade B-cell lymphoma (HGBL) is a newly introduced category of rare and heterogeneous invasive B-cell lymphoma (BCL), which is diagnosed depending on fluorescence hybridization (FISH), an expensive and laborious analysis. In order to identify HGBL with minimal workup and costs, a total of 187 newly diagnosed BCL patients were enrolled in a cohort study. As a result, the overall survival (OS) and progression-free survival (PFS) of the HGBL group were inferior to those of the non-HGBL group. HGBL (n = 35) was more likely to have a high-grade histomorphology appearance, extranodal involvement, bone marrow involvement, and whole-body maximum standardized uptake (SUVmax). The machine learning classification models indicated that histomorphology appearance, Ann Arbor stage, lactate dehydrogenase (LDH), and International Prognostic Index (IPI) risk group were independent risk factors for diagnosing HGBL. Patients in the high IPI risk group, who are CD10 positive, and who have extranodal involvement, high LDH, high white blood cell (WBC), bone marrow involvement, old age, advanced Ann Arbor stage, and high SUVmax had a higher risk of death within 1 year. In addition, these models prompt the clinical features with which the patients should be recommended to undergo a FISH test. Furthermore, this study supports that first-line treatment with R-CHOP has dismal efficacy in HGBL. A novel induction therapeutic regimen is still urgently needed to ameliorate the poor outcome of HGBL patients.

摘要

高级别 B 细胞淋巴瘤(HGBL)是一种新引入的罕见且异质性侵袭性 B 细胞淋巴瘤(BCL)类别,其诊断取决于荧光杂交(FISH),这是一种昂贵且繁琐的分析。为了以最少的工作量和成本识别 HGBL,共招募了 187 名新诊断的 BCL 患者进行队列研究。结果显示,HGBL 组的总生存期(OS)和无进展生存期(PFS)均劣于非 HGBL 组。HGBL(n=35)更有可能具有高级别的组织形态学表现、结外受累、骨髓受累和全身最大标准化摄取(SUVmax)。机器学习分类模型表明,组织形态学表现、Ann Arbor 分期、乳酸脱氢酶(LDH)和国际预后指数(IPI)风险组是诊断 HGBL 的独立危险因素。在高 IPI 风险组中,CD10 阳性、结外受累、高 LDH、高白细胞(WBC)、骨髓受累、高龄、晚期 Ann Arbor 分期和高 SUVmax 的患者在 1 年内死亡的风险更高。此外,这些模型提示具有这些临床特征的患者应推荐进行 FISH 检测。此外,这项研究支持 R-CHOP 一线治疗在 HGBL 中的疗效不佳。仍然迫切需要新的诱导治疗方案来改善 HGBL 患者的不良预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42c6/9171399/d7da9690fe9c/fimmu-13-919012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验